登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
关于带排斥调和势的非线性Schr(o)dinger方程的爆破
  • 摘要

    主要研究带排斥调和势的临界非线性Schr(o)dinger方程的爆破解.利用不带势的非线性Schr(o)dinger方程的基态度分特征和插值估计技术,得到方程爆破解的L~p模的下界估计.

  • 作者

    赵凌 

  • 作者单位

    四川师范大学,数学与软件科学学院,四川,成都,610066

  • 刊期

    2009年6期 ISTIC PKU

  • 关键词

    线性Schr(o)dinger方程  排斥调和势  爆破率 

参考文献
  • [1] 李晓光,张健. 一类耦合非线性Schr(o)dinger方程组的L2-集中性质. 四川大学学报(自然科学版), 2006,3
  • [2] 舒级. 吸引玻色-爱因斯坦凝聚在二维空间中的整体稳定性. 四川师范大学学报(自然科学版), 2006,6
  • [3] 舒级,张健. 一类带调和势的非线性Schrodinger方程解的爆破性质. 四川师范大学学报(自然科学版), 2002,1
  • [4] 郑斌. 2+1维非线性Schr(O)dinger方程的显式解. 重庆师范大学学报(自然科学版), 2006,2
  • [5] Carles R. Nonlinear Schr(o)dinger equations with repulsive harmonic potential and applications. SIAM Journal on Mathematical Analysis, 2003
  • [6] Li X G;Zhang J. Limit behavior of blow-up solutions for critical nonlinear Schr(o)dinger equation with harmonic potential. Diff Int Equat, 2006
  • [7] Zhu S H;Li X G. Sharp upper and lower bounds on the blow-up rate for nonlinear Schr(o)dinger equation with potential. Applied Mathematics and Computation, 2007
  • [8] Kwong M K. Uniqueness of positive solutions of △u-u +u~p=0 in R~n. Archive for Rational Mechanics and Analysis, 1989
  • [9] Strauss W A. Existence of solitary waves in higher dimensions. Communications in Mathematical Physics, 1977
  • [10] Merle F;Raphal P. Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schr(o)dinger equation. Annals of Mathematics, 2005
  • [11] Merle F;Raphal P. Sharp upper bound on the blow up rate for critical nonlinear Schr(o)dinger equation. Geometric and Functional Analysis, 2003
  • [12] Merle F;Raphal P. On a sharp lower bound on the blow-up rate for the L~2-critical nonlinear Schr(o)dinger equation. Journal of the American Society, 2006
  • [13] Zhang J. Stability of attractive Bose-Einstein condensate. Journal of Statistical Physics, 2000
  • [14] Weinstein M I. Nonlinear Schr(o)dinger equations and sharp interpolation estimates. Communications in Mathematical Physics, 1983
  • [15] Oh Y G. Cauchy problem and Ehrenfest's law of nonlinear Schr(o)dinger equations with potentials. Journal of Differential Equations, 1989
  • [16] Cazenave T. An Introduction to Nonlinear Schrodinger Equations,Textos de Métodos Matemáticos 26. Rio de Janeiro:Instituto de Matemática Rio de Janeiro, 1996
  • [17] Zhang J. Sharp conditions of global existence for nonlinear Schr(o)dinger and Klein-Gordon equations. Nonlinear Analysis-Theory Methods and Applications, 2002
  • [18] Zhang J. Sharp threshold for blowup and global existence in nonlinear Schr(o)dinger equations under a harmonic potential. Commum Partial Diff Equat, 2005
  • [19] Carles R. Critical nonlinear Schr(o)dinger equations with and without harmonic potential. Math Mod Meth Appl Sci, 2002
  • [20] Li X G;Zhang J;Chen G G. L~2-concentration of blow-up solutions for the nonlinear Schr(o)dinger equations with harmonic potential. Chinese Journal of Contemporary Mathematics, 2005
查看更多︾
相似文献 查看更多>>
18.208.187.169