登录 | 注册 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
铅锌矿尾矿坝分离节杆菌12-1对Pb2+的耐受和吸附性能研究
  • 摘要

    当前铅资源的粗放式开采和使用对环境造成了严重的污染。利用微生物修复铅污染具有费用低、易操作、环境友好等优点,在水体和土壤铅污染治理中具有很好的应用前景。为了了解微生物对铅的吸附特性,本研究从铅锌矿尾矿坝分离到的一株耐铅节杆菌(Arthrobacter sp.)12-1(GenBank登录号:KM362724),并研究其对铅的吸附过程和作用机制。研究耐铅节杆菌12-1在含不同Pb2+浓度LB培养基中的生长情况表明,其最高可耐受800 mg/L Pb2+。在水溶液中,经24 h吸附,耐铅节杆菌12-1可将Pb2+浓度从105 mg/L降至2.17 mg/L,吸附率为97.93%。显微成像(原子力显微镜,扫描电镜)观察和能谱分析表明,耐铅节杆菌12-1吸附铅后在细胞表面形成含铅的矿物。傅立叶变换红外光谱(FT-IR)分析表明,耐铅节杆菌12-1细胞上的羧基、酰胺和磷酸基团可能参与了铅的吸附和固定过程。以上结果表明,从铅锌矿尾矿坝分离到的耐铅节杆菌12-1对铅具有较好的耐受和吸附能力,显示其在铅污染环境修复中具有潜在的应用前景。本研究为细菌修复铅污染环境的实践提供了理论基础。

  • 作者

    陈志  邹情雅  潘晓鸿  林璋  关雄  CHEN Zhi  ZOU Qing-Ya  PAN Xiao-Hong  LIN Zhang  GUAN Xiong 

  • 作者单位

    福建农林大学生物农药与化学生物学教育部重点实验室,福州350002; 中国科学院福建物质结构研究所/结构化学国家重点实验室,福州350002/福建农林大学生物农药与化学生物学教育部重点实验室,福州,350002/中国科学院福建物质结构研究所/结构化学国家重点实验室,福州,350002

  • 刊期

    2014年11期 ISTIC PKU

  • 关键词

      节杆菌  生物吸附  耐受  铅锌矿尾矿  Lead  Arthrobacter sp.  Biosorption  Tolerance  Lead-zinc mine tailing 

参考文献
  • [1] 金磊,王丽,钟青萍. 植物乳杆菌活的非可培养状态的初步研究. 食品工业科技, 2013,16
  • [2] 王红梅,吴晓萍,邱轩,刘邓. 微生物成因的碳酸盐矿物研究进展. 微生物学通报, 2013,1
  • [3] 王亚雄,郭瑾珑,刘瑞霞. 微生物吸附剂对重金属的吸附特性. 环境科学, 2001,6
  • [4] 许燕波,钱春香,陆兆文. 微生物矿化修复铅离子污染的研究. 化工时刊, 2012,6
  • [5] 王卓,邵泽强. 土壤铅污染及其治理措施. 农业技术与装备, 2009,2
  • [6] LI Bin,WANG Yong-Hao,CHENG Yang-Jian,MA Xiao-Yan,PAN Dan-Mei,LIN Zhang. Surface Changes of Ochrobactrum Anthropi in Cr(Ⅵ) Treatment for 1 Hour. 结构化学, 2009,2
  • [7] 苏艳蓉. 重金属耐受菌的分离及吸附铅的研究. 中南大学, 2011
  • [8] 杜立栋,王有年,李奕松,于同泉,路苹,梁为. 微生物对土壤中铅富集作用的研究. 北京农学院学报, 2008,1
  • [9] Bazylinski D A;Frankel R B;Konhauser K O. Modes of biomineralization of magnetite by microbes. Geo-microbiology Journal, 2007,06
  • [10] Cai C F;Dong H L;Li H T. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Sha-shagetai deposit,NW China. Chemical Geology, 2007,1-2
  • [11] Camesano T A;Natan M J;Logan B E. Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. LANGMUIR, 2000,10
  • [12] Chen Z;Cheng Y;Pan D. Diversity of microbial community in Shihongtan sandstone-type uranium de-posits,Xinjiang,China. GEOMICROBIOLOGY JOURNAL, 2012,03
  • [13] Cho D H;Kim E Y. Characterization of Pb2+biosorption from aqueous solution by Rhodotorula glutinis. Bio-process and Biosystems Engineering, 2003,05
  • [14] Lovley D R. Bioremediation of organic and metal con-taminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 1995,02
  • [15] Mire C E;Tourjee J A;O'Brien W F. Lead precipi-tation by Vibrio harveyi:Evidence for novel quorum-sensing interactions. Applied and Environment Micro-biology, 2004,02
  • [16] Murugesan A;Ravikumar L;SathyaSelvaBala V. Removal of Pb(Ⅱ),Cu(Ⅱ)and Cd(Ⅱ)ions from aque-ous solution using polyazomethineamides:Equilibrium and kinetic approach. DESALINATION, 2011,1-3
  • [17] Naik M M;Khanolkar D;Dubey S K. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb2+as lead phosphate. Letters in Applied Microbiology, 2013,02
  • [18] Pan J;Ge X;Liu R. Characteristic features of Ba-cillus cereus cell surfaces with biosorption of Pb(Ⅱ)ions by AFM and FT-IR. Colloids and Surfaces B-Biointerfaces, 2006,01
  • [19] Pan X H;Chen Z;Cheng Y J. The analysis of the immobilization mechanism of Ni(Ⅱ)on Bacillus cereus. Journal of Nanoscience and Nanotechnology, 2011,04
  • [20] Parissa K;Omid M;Mohammad A. A systematic re-view on status of lead pollution and toxicity in Iran;Guidance for preventive measures. DARU Journal of Pharmaceutical of Scienses, 2012,01
  • [21] Ferreira L S;Rodrigues M S;de Carvalho J C M. Adsorption of Ni2+,Zn2+and Pb2+onto dry biomass of Ar-throspira(Spirulina)platensis and Chlorella vulgaris.I.single metal systems. CHEMICAL ENGINEERING JOURNAL, 2011,02
  • [22] Levinson H S;Mahler I;Blackwelder P. Lead re-sistance and sensitivity in Staphylococcus aureus. FEMS Microbiology Letters, 1996,03
  • [23] Lo W H;Chua H;Lam K H. A comparative inves-tigation on the biosorption of lead by filamentous fun-gal biomass. CHEMOSPHERE, 1999,15
  • [24] Sari A;Tuzen M. Kinetic and equilibrium studies of bio-sorption of Pb(Ⅱ)and Cd(Ⅱ)from aqueous solution by macrofungus(Amanita rubescens)biomass. Journal of Hazardous Materials, 2009,2-3
  • [25] Shamala T R;Divyashree M S;Davis R. Produc-tion and characterization of bacterial polyhydroxyal-kanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian Journal of Microbiology, 2009,03
  • [26] Sulaymon A H;Ebrahim S E;Mohammed-Ridha M J. Equilibrium,kinetic,and thermodynamic biosorption of Pb(Ⅱ),Cr(Ⅲ),and Cd(Ⅱ)ions by dead anaerobic bio-mass from synthetic wastewater. Environmental Sci-ence and Pollution Research International, 2013,01
  • [27] Tuzun I;Bayramoglu G;Yalcin E. Equilibrium and kinetic studies on biosorption of Hg(Ⅱ),Cd(Ⅱ)and Pb(Ⅱ)ions onto microalgae Chlamydomonas rein-hardtii. Journal of Environmental Management, 2005,02
  • [28] Akar T;Tunali S. Biosorption characteristics of Aspergil-lus flavus biomass for removal of Pb(Ⅱ)and Cu(Ⅱ)ions from an aqueous solution. Bioresource Technolo-gy, 2006,15
  • [29] Al-Qadiri H M;Al-Alami N I;Al-Holy M A. Us-ing fourier transform infrared(FT-IR)absorbance spec-troscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water. Journal of Agricultural and Food Chemistry, 2008,19
查看更多︾
相似文献 查看更多>>
3.214.184.124