登录 | 注册 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
不同培养系统对鸡精原干细胞体外增殖作用的比较
  • 摘要

    本研究比较了层粘连蛋白(laminin)、纤维连接蛋白(fibronectin)、胶原蛋白(collagen)以及睾丸支持细胞(sertoli cell)4种不同培养系统对鸡(Gallus gallus)精原干细胞(spermatogonial stem cells,SSCs)体外增殖的作用效果.采用三酶两步消化法分离SSCs,细胞经明胶差速纯化后培养,将传至3代的SSCs重新接种于层粘连蛋白、纤维连接蛋白和胶原蛋白包被的培养皿中以及睾丸支持细胞制备的饲养层上,通过形态学、5-乙基-2'-脱氧尿嘧啶核苷(EDU)细胞增殖、qRT-PCR技术检测不同培养系统对鸡精原干细胞体外增殖的作用效果.结果表明,鸡SSCs的碱性磷酸酶(AKP)阳性克隆数在睾丸支持细胞组最高,达到每视野(32±3)个,层粘连蛋白组、纤维连接蛋白组和胶原蛋白组分别为(26±3)、(24±2)和(23±2)个,三组差异不显著(P>0.05); EDU检测睾丸支持细胞组细胞增殖率为(92.82±2.15)%,显著高于三组基质蛋白组(P<0.01); qRT-PCR结果显示,增殖标记基因原癌基因(myconcogene,c-myc)、Kruppel样因子4(kruppel-like factor 4,Klf4)、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)在睾丸支持细胞组的表达量最高,其次为层粘连蛋白组,c-myc和Klf4在纤维连接蛋白组中的表达要高于胶原蛋白组,PCNA则相反.实验结果表明:三组基质蛋白及睾丸支持细胞都能够促进鸡SSCs的体外增殖,其中睾丸支持细胞作用最佳,其次为层粘连蛋白,纤维连接蛋白和胶原蛋白两者作用效果差异不显著.该结果为进一步优化鸡胚SSCs的体外培养体系,阐明生殖细胞增殖机制提供了实验基础和理论支撑.

  • 作者

    施青青  左其生  李东  张蕾  黄晓梅  张振韬  张亚妮  李碧春 

  • 作者单位

    扬州大学动物科学与技术学院/江苏省动物繁育与分子设计重点实验室,扬州,225009

  • 刊期

    2014年6期 ISTIC PKU

  • 关键词

    胶原蛋白  纤维连接蛋白  层粘连蛋白  睾丸支持细胞    精原干细胞  Collagen  Fibronectin  Laminin  Sertoli cells  Chicken  Spermatogonial ctem cells 

参考文献
  • [1] 魏彩霞,孙思宇,孙国波,赵文明,李碧春. mLIF、bFGF和SCF对鸡精原干细胞体外增殖的影响. 中国畜牧杂志, 2007,17
  • [2] Kim J;Seandel M;Falciatori I. CD34+ testicular stromal cells support long-term expansion of embryonic and adult stem and progenitor cells. STEM CELLS, 2008,10
  • [3] Nayemia K;Li M;Engel W. Spermatogonial stem cells. Methods in Molecular Biology, 2004
  • [4] Qing T;Shi Y;Qin H. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. DIFFERENTIATION, 2007,10
  • [5] Salic A;Mitchison T J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences(USA), 2008,07
  • [6] Seandel M;James D;Shmelkov S V. Generation of functional multipotent adult stem cells from GPR125 + germline progenitors. NATURE, 2007,7160
  • [7] Ko K;Arauzo-Bravo M J;Kim J. Conversion of adult mouse unipotent germline stem cells into pluripotent stem cells. Nature Protocols, 2010,05
  • [8] Koruji M;Movahedin M;Mowla S J. Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2009,5-6
  • [9] Kubota H;Brinster R L. Technology insight:In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clinical Practice Endocrinology & Metabolism, 2006,02
  • [10] Nagano M;Avarbock M R;Leonida E B. Culture of mouse spermatogonial stem cells. Tissue and cell, 1998,04
  • [11] Nagano M;Ryu B Y;Brinster C J. Maintenance of mouse male germ line stem cells in vitro. Biology of Reproduction, 2003,06
  • [12] Nasiria Z;Hosseini S M;Hajian M. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. THERIOGENOLOGY, 2012,08
  • [13] Brinster R L;Avarbock M R. Germline transmission of donor haplotype following spermatogonial transplantation. Proceedings of the National Academy of Sciences(USA), 1994,24
  • [14] Lee N P;Cheng C Y. Adaptors,junction dynamics,and spermatogenesis. Biology of Reproduction, 2004,02
  • [15] Li B;Wang X Y;Tian Z. Directional differentiation of chicken spermatogonial stem cells in vitro. CYTOTHERAPY, 2010,03
  • [16] Mohamadi S M;Movahedin M;Koruji S M. Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems. Androlodia, 2012,01
  • [17] Takashima S;Takehashi M;Lee J. Abnormal DNA methyltransferase expression in mouse germline stem cells results in spermatogenic defects. Biology of Reproduction, 2009,01
  • [18] Tanentzapf G;Devenport D;Godt D. Integrindependent anchoring of a stem-cell niche. Nature Cell Biology, 2007,12
  • [19] Tate M C;Garcia A J;Keselowsky B G. Specific betal integrins mediate adhesion,migration,and differentiation of neural progenitors derived from the embryonic striatum. Molecular and Cellular Neuroscience, 2004,01
  • [20] Yang Y;Honaramooz A. Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reproduction Fertility and Development, 2011,03
  • [21] Brinster R L;Zimmermann J W. Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences(USA), 1994,24
  • [22] Hamra F K;Schultz N;Chapman K M. Defining the spermatogonial stem cell. Developmental Biology, 2004,02
  • [23] Hayashi Y;Furue M K;Okamoto T. Integrins regulate mouse embryonic stem cell self-renewal. STEM CELLS, 2007,12
  • [24] Jeong D;McLean D J;Griswold M D. Long-term culture and transplantation of murine testicular germ cells. Journal of Andrology, 2003,05
  • [25] Kanatsu-Shinohara M;Inoue K;Ogonuki N. Serum-and feeder-free culture of mouse germline stem cells. Biology of Reproduction, 2011,01
  • [26] Kanatsu-Shinohara M;Muneto T;Lee J. Longterm culture of male germline stem cells from hamster testes. Biology of Reproduction, 2008,04
  • [27] Stukenborg J B;Schlatt S;Simoni M. New horizons for in vitro spermatogenesis? An update on novel threedimensional culture systems as tools for meiotic and postmeiotic differentiation of testicular germ cells. Molecular Human Reproduction, 2009,09
  • [28] Kanatsu-Shinohara M;Ogonuki N;Iwano T. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. DEVELOPMENT, 2005,18
查看更多︾
3.231.220.139