登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
基于趋势的时间序列相似性度量和聚类研究
  • 摘要

    由于时间序列的长度很大,并且不确定时间序列在每个采样点的取值具有不确定性,导致时间序列在相似性匹配和聚类挖掘中时间复杂度很高,为了解决该问题,提出了基于趋势的时间序列相似性度量方法和聚类方法.其中基于趋势的相似性度量方法根据时间序列的整体变化趋势,将时间序列映射为短的趋势符号序列,并利用各趋势的一阶连接性指数和塔尼莫特系数完成相似性度量;基于趋势的聚类方法通过定义趋势高度,并对趋势符号序列迭代进行区间划分和趋势判断,并以此构建趋势树,最后将趋势树根节点中趋势符号相同的序列聚集为一类.实验结果表明:a)五种趋势符号的一阶连接性指数可唯一地表示一条时间序列;b)基于趋势的相似性度量方法在多项式时间内可有效完成时间序列的相似性匹配;c)基于趋势的聚类方法将序列的相似性度量和聚类过程集中在一起,聚类效果显著.

  • 作者

    肖瑞  刘国华  XIAO Rui  LIU Guo-hua 

  • 作者单位

    东华大学计算机科学与技术学院,上海,201620

  • 刊期

    2014年9期 ISTIC PKU

  • 关键词

    时间序列  不确定性  相似性度量  聚类  趋势符号  time series  uncertainty  similarity measure  cluster  trend symbol 

参考文献
  • [1] 陈湘涛,李明亮,陈玉娟. 基于时间序列相似性聚类的应用研究综述. 计算机工程与设计, 2010,03
  • [2] AGRAWAL R,FALOUTSOS C,SWAMI A.Efficient similarity search in sequence databases[C]//Proc of the 4th International Conference on Foundations of Data Organization and Algorithms.1993:69-84.. 1993
  • [3] BERNDT D,CLIFFORD J.Using dynamic time warping to find patterns in time series[C]//Proc of AAAI Workshop on Knowledge Discovery in Databases.1994:229-248.. 1994
  • [4] KEOGH E,RATANAMAHATANA C A.Exact indexing of dynamic time warping[J].Knowledge and Information Systems,2005,7(3):358-386.. 2005
  • [5] CHEN Lei,(O)ESU M T,ORIA V.Robust and fast similarity search for moving object trajectories[C]//Proc of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2005:491-502.. 2005
  • [6] PICCOLO D.A distance measure for classifying ARMA models[J].Journal of Time Series Analysis,1990,11 (2):153-163.. 1990
  • [7] FU T C,CHUNG F L,NG V,et al.Pattern discovery from stock time series using self-organizing maps[J].Pattern Recognition,2001,40(4):27-37.. 2001
  • [8] OWSLEY L M D,ATLAS L E,BERNARD G D.Self-organizing feature maps and hidden Markov models for machine-tool monitoring[J].IEEE Trans on Signal Process,1997,45(11):2787-2798.. 1997
  • [9] JI Min,XIE Fu-ding,PING Yu.A dynamic fuzzy cluster algorithm for time series[J].Abstract and Applied Analysis,2013,2013:349-356.. 2013
  • [10] AβFALG J,KRIEGEL H,KR(O)GER P,et al.Probabilistic similarity search for uncertain time series[C]//Proc of the 21st International Conference on Scientific and Statistical Database Management.Berlin:Springer,2009:435-443.. 2009
  • [11] CHEN Yue-guo,NASCIMENTO M A,DOI B C,et al.SpADe:on shape-based pattern detection in streaming time series[C]//Proc of the 23rd IEEE International Conference on Data Engineering.2007:786-795.. 2007
  • [12] HUANG Zhe-xue.Extensions to the K-means algorithm for clustering large data sets with categorical values[J].Data Mining and Knowledge,Discovery II,1998,3(2):283-304.. 1998
  • [13] HUANG Zhe-xue,NG M K.Fuzzy K-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy System,1999,7 (4):446-452.. 1999
  • [14] YANG J,LESKOVEC J.Patterns of temporal variation in online media[C]//Proc of the 4th ACM International Conference on Web Search and Data Mining.New York:ACM Press,2011:177-186.. 2011
  • [15] KOSMELJ K,BATAGELJ V.Cross-sectional approach for clustering time varying data[J].Journal of Classification,1990,7 (1):99-109.. 1990
  • [16] GOLAY X,KOLLIAS S,STOLL G,et al.A new correlation-based fuzzy logic clustering algorithm for FMRI[J].Magnetic Resonance in Medicine,1998,40(2):249-260.. 1998
  • [17] MOLLER-LEVET C S,KLAWONN F.Fuzzy clustering of short time series and unevenly distributed sampling points[C]//Proc of the 5 th International Symposium on Intelligent Data Analysis.2003:330-342.. 2003
  • [18] PARSONS L,HAQUE E,LIU Huan.Subspace clustering for high dimensional data:a review[J].SIGKDD Exploration,2004,6 (1):90-105.. 2004
  • [19] WANG Li-tao,MELIRABI M,KANNATEY-ASIBU E.Hidden Markov model-based wear momtormg in turning[J].Journal of manufacturing Science and Engineering,2002,124(3):651-658.. 2002
  • [20] MORSE M D,PATEL J M.An efficient and accurate method for evaluating time series similarity[C]//Proc of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2007:569-580.. 2007
查看更多︾
相似文献 查看更多>>
18.208.159.25