登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
从加权网络中预测蛋白质复合物
  • 摘要

    实验产生的蛋白质相互作用数据不可避免地伴随着假阳性和假阴性,因而,基于蛋白质相互作用数据预测蛋白质复合物的计算方法天然具有较大的误差.为了弥补这种数据先天性不足,基因表达谱被结合进来,构造了新的加权蛋白质网络.为了验证网络的生物学意义,马尔可夫聚类算法被用于从加权与非加权网络中预测蛋白质复合物,预测到的复合物与基准复合物进行匹配分析.分析结果表明,加权网络比非加权网络具有更高的生物学意义.

  • 作者

    汤希玮  李勇帆  胡秋玲  TANG Xi-wei  LI Yong-fan  HU Qiu-ling 

  • 作者单位

    湖南第一师范学院信息科学与工程系,长沙,410205

  • 刊期

    2012年12期 ISTIC PKU

  • 关键词

    蛋白质相互作用  基因表达谱  蛋白质复合物  匹配统计 

参考文献
  • [1] Manoj Pratim Samanta;Shoudan Liang. Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Sciences of the United States of America, 2003,22
  • [2] Georgii Elisabeth;Dietmann Sabine;Uno Takeaki;Pagel Philipp;Tsuda Koji. Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics, 2009,7
  • [3] Pu S;Wong J;Turner B;Cho E;Wodak SJ. Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 2009,3
  • [4] King AD;Przulj N;Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics, 2004,17
  • [5] Enright AJ;Van Dongen S;Ouzounis CA. An efficient algorithm for large-scale detection of protein families.. Nucleic Acids Research, 2002,7
  • [6] Chen JC;Yuan B. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics, 2006,18
  • [7] Navlakha, S;Schatz, MC;Kingsford, C. Revealing Biological Modules via Graph Summarization. Journal of computational biology, 2009,2
  • [8] BADER G D;HOGUE C W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003,02
  • [9] ALTAF-UL-AMIN M;SHINBO Y;MIHARA K. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 2006,01
  • [10] COLAK R;HORMOZDIAR I F;MOSER F. Dense graphlet statistics of protein interaction and random networks. 2009
  • [11] LOEWENSTEIN Y;PORTUGALY E;FROMER M. Efficient algorithms for accurate hierarchical clustering of huge datasets:tackling the entire protein space. Bioinformatics, 2008,13
  • [12] PALLA G;DERENYI I;FARKAS I. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005,7043
  • [13] SHARAN R;SUTHRAM S;KELLEY R M. Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences, 2005,06
  • [14] Database of interacting proteins. http://dip.doe-mbi.ucla.edu/dip/Download.cgi? SM =7/
  • [15] HARTWELL L H;HOPFIELD J J;LEIBLER S. From molecular to modular cell biology. Nature, 1999,6761
  • [16] TUB P;KUDLICKI A;ROWICKA M. Logic of the yeast metabolic cycle:temporal compartmentalization of cellular processes. Science, 2005,5751
  • [17] PEREIR-LEAL J B;ENRIGHT A J;OUZOUNIS C A. Detection of functional modules from protein interaction networks. Proteins:Structure,Function,and Genetics, 2004,01
  • [18] RIVES A W;GALITSKI T. Modular organization of cellular networks. Proceedings of the National Academy of Sciences, 2003,03
  • [19] SPIRIN V;MIRNY L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 2003,21
  • [20] BLATT M;WISEMAN S;DOMANY E. Superparamagnetic clustering of data. Physical Review Letters, 1996,18
  • [21] BRUN C;CHEVENET F;MARTIN D. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology, 2004,01
查看更多︾
相似文献 查看更多>>
54.227.76.35