登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
序粒度标记结构及其粗糙近似
  • 摘要

    粒计算是知识表示和数据挖掘的一个重要方法.它模拟人类思考模式,以粒为基本计算单位,以处理大规模复杂数据和信息等建立有效的计算模型为目标.针对具有多粒度标记的序信息系统的知识获取问题,提出了基于序粒度标记结构的粗糙近似.首先,介绍了序标记结构的概念,并在序标记结构的对象集中定义了一个优势关系,同时给出了由优势关系导出的优势标记块,并进一步定义了基于优势关系的集合的序下近似与序上近似和序标记下近似与序标记上近似的概念,给出了近似算子的一些性质.证明了由序标记结构导出的集合的下近似质量与上近似质量是一对对偶的必然性测度与可能性测度.最后,定义了多粒度序标记结构的概念,并讨论了多粒度序标记结构中不同粒度下近似集之间的关系.

  • 作者

    吴伟志  高仓健  李同军  Wu Weizhi  Gao Cangjian  Li Tongjun 

  • 作者单位

    浙江海洋学院数理与信息学院 浙江舟山 316022;计算智能重庆市重点实验室 重庆400065/浙江海洋学院数理与信息学院 浙江舟山 316022

  • 刊期

    2014年12期 ISTIC EI PKU

  • 关键词

    近似算子  粒计算  标记块  序标记结构  粗糙集  approximation operators  granular computing  labeled blocks  ordered labeled structures  rough sets 

参考文献
  • [1] 苗夺谦,徐菲菲,姚一豫,魏莱. 粒计算的集合论描述. 计算机学报, 2012,2
  • [2] 吴伟志,米据生,李同军. 无限论域中的粗糙近似空间与信任结构. 计算机研究与发展, 2012,2
  • [3] 张楠,苗夺谦,岳晓冬. 区间值信息系统的知识约简. 计算机研究与发展, 2010,8
  • [4] 仇国芳,马建敏,杨宏志,张文修. 概念粒计算系统的数学模型. 中国科学F辑, 2009,12
  • [5] 刘清,刘群. 粒及粒计算在逻辑推理中的应用. 计算机研究与发展, 2004,4
  • [6] Lin T Y. Granular computing:Structures,representations,and applications. Berlin:Springer-Verlag, 2003
  • [7] Pedrycz W;Skowron A;Kreinovich V. Handbook of Granular Computing. New York:Wiley, 2008
  • [8] Skowron A;Stepaniuk J;Swiniarski R. Modeling rough granular computing based on approximation spaces. Information Sciences, 2012,01
  • [9] Wu W Z;Leung Y;Mi J S. Granular computing and knowledge reduction in formal contexts. IEEE Transactions on Knowledge and Data Engineering, 2009,10
  • [10] 苗夺谦;王国胤;刘清. 粒计算的过去、现在与展望. 北京:科学出版社, 2007
  • [11] Yao J T. Recent developments in granular computing:A bibliometrics study. Piscataway,NJ:IEEE, 2008
  • [12] Pal S K;Shankar B U;Mitra P. Granular computing,rough entropy and object extraction. Pattern Recognition Letters, 2005,16
  • [13] Yao Y Y. Granular computing:Basic issues and possible solutions. Durham:Duke University Press, 2000
  • [14] Lin G P;Qian Y H;Li J J. NMGRS:Neighborhood-based multigranulation rough sets. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012,07
  • [15] Liang J Y;Shi Z Z. The information entropy,rough entropy and knowledge granulation in rough set theory. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2004,01
  • [16] Liang J Y;Wang J H;Qian Y H. A new measure of uncertainty based on knowledge granulation for rough sets. Information Sciences, 2009,04
  • [17] Lin T Y;Yao Y Y;Zadeh L A. Data Mining,Rough Sets and Granular Computing. New York:Physica-Verlag, 2002
  • [18] QianY H;Liang J Y;Yao Y Y. MGRS:A multigranulation rough set. Information Sciences, 2010,06
  • [19] Wu W Z;Leung Y. Optimal scale selection for multi-scale decision tables. International Journal of Approximation Reasoning, 2013,08
  • [20] Kryszkiewicz M. Rough set approach to incomplete information systems. Information Sciences, 1998,1/2/3/4
  • [21] Leung Y;Fischer M M;Wu W Z. A rough set approach for the discovery of classification rules in intervalvalued information systems. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008,02
  • [22] Greco S;Matarazzo B;Slowinski R. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 2001,01
  • [23] Shao M W;Zhang W X. Dominance relation and rules in an incomplete ordered information system. International Journal of Intelligent Systems, 2005,01
  • [24] 徐伟华. 序信息系统与粗糙集. 北京:科学出版社, 2013
  • [25] Shafer G. A Mathematical Theory of Evidence. Princeton,New Jersey:Princeton University Press, 1976
  • [26] Wu W Z;Leung Y;Mi J S. On generalized fuzzy belief functions in infinite spaces. IEEE Transactions on Fuzzy Systems, 2009,02
  • [27] Wu W Z;Leung Y;Zhang W X. Connections between rough set theory and Dempster-Shafer theory of evidence. International Journal of General Systems, 2002,04
  • [28] Bianucci D;Cattaneo G. Information entropy and granulation co-entropy of partitions and coverings:A summary. Berlin:Springer-Verlag, 2009
  • [29] Yao Y Y. Stratified rough sets and granular computing. Piscataway,NJ:IEEE, 1999
  • [30] Yao Y Y. A partition model of granular computing. Berlin:Springer-Verlag, 2004
  • [31] Yao Y Y;Zhao L Q. A measurement theory view on the granularity of partitions. Information Sciences, 2012,01
  • [32] Pawlak Z. Rough Sets:Theoretical Aspects of Reasoning about Data. Amsterdam,Netherlands:Kluwer Academic Publishers, 1991
  • [33] Wu W Z. Rough set approximations based on granular labels. Berlin:Springer-Verlag, 2009
  • [34] Wu W Z;Leung Y. Theory and applications of granular labelled partitions in multi-scale decision tables. Information Sciences, 2011,18
  • [35] 苗夺谦;李德毅;姚一豫. 不确定性与粒计算. 北京:科学出版社, 2011
  • [36] Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978,01
  • [37] Honko P. Association discovery from relational data via granular computing. Information Sciences, 2013
  • [38] Inuiguchi M;Hirano S;Tsumoto S. Rough Set Theory and Granular Computing. Berlin:Springer-Verlag, 2003
  • [39] Leung Y;Li D Y. Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences, 2003
  • [40] Dubois D;Prade H. Properties of measures of information in evidence and possibilities. Fuzzy Sets and Systems, 1999,Suppl 1
  • [41] 张文修;梁怡;徐萍. 基于包含度的不确定性推理. 北京:清华大学出版社, 2007
  • [42] Bittner T;Stell J. Stratified rough sets and vagueness. Berlin:Springer-Verlag, 2003
  • [43] Doherty P;Lukaszewicz W;Skowron A. Knowledge Representation Techniques:A Rough Set Approach. Berlin:Springer-Verlag, 2006
查看更多︾
相似文献 查看更多>>
34.204.0.181