登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
全同态加密研究动态及其应用概述
  • 摘要

    随着互联网的发展,尤其是云计算概念的诞生,人们在加密数据搜索与处理等方面的需求日益增加,使得全同态加密变得愈加重要.全同态加密的思想是20世纪70年代Rivest等人首次提出的,如何构造满足全同态性质的体制一直是困扰密码学家的难题,直到2009年Gentry基于理想格提出了第1个全同态加密体制使得该方面的研究取得突破性进展.随后许多密码学家在全同态加密方案的研究上作出了有意义的工作,促进了全同态加密向实用化的发展.对全同态加密的研究动态进行了概要的介绍,包括Gentry提出的第1个全同态加密方案及其优化;基于整数的全同态加密方案;基于LWE问题的全同态加密方案等.随后探讨了全同态加密的一般性应用框架,并以云计算、电子投票、数字水印3个应用为例,介绍了全同态加密的重要应用价值.

  • 作者

    刘明洁  王安  Liu Mingjie  Wang An 

  • 作者单位

    北京大学北京国际数学研究中心 北京 100871/清华大学微电子学研究所 北京 100084

  • 刊期

    2014年12期 ISTIC EI PKU

  • 关键词

    密码学  公钥密码学  全同态加密  云计算  信息安全  cryptography  public-key cryptography  fully homomorphric encryption  cloud computing  information security 

参考文献
  • [1] 吴光远,何丕廉,曹桂宏,聂颂. 基于向量空间模型的词共现研究及其在文本分类中的应用. 计算机应用, 2003,z1
  • [2] 刘艮,蒋天发. 同态加密技术及其在物联网中的应用研究. 信息网络安全, 2011,5
  • [3] Rivest R;Adleman L;Dertouzos M. On data banks and privacy homomorphisms. New York:Academic Press,Inc, 1978
  • [4] Naccache D;Stern J. A new public-key cryptosystem based on higher residues. New York:ACM, 1998
  • [5] El-Gamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. Berlin:Springer-Verlag, 1984
  • [6] Smart N P;Vercauteren F. Fully homomorphic encryption with relatively small key and ciphertext sizes. Berlin:Springer-Verlag, 2010
  • [7] Gentry C;Halevi S. Implementing Gentry's fullyhomomorphic encryption scheme. Berlin:Springer-Verlag, 2011
  • [8] Brakerski Z;Gentry C;Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. New York:ACM, 2012
  • [9] Boneh D;Goh E;Nissim K. Evaluating 2-DNF formulas on ciphertexts. Berlin:Springer-Verlag, 2005
  • [10] Gentry C. Fully homomorphic encryption using ideal lattices. New York:ACM, 2009
  • [11] Dijk M;Gentry C;Halevi S. Fully homomorphic encryption over the integers. Berlin:Springer-Verlag, 2010
  • [12] Goldreich O;Goldwasser S;Halevi S. Public-key cryptosystems from lattice reduction problems. Berlin:Springer-Verlag, 1997
  • [13] Gentry C;Halevi S;Smart P. Fully homomorphic encryption with polylog overhead. Berlin:Springer-Verlag, 2012
  • [14] Gentry C;Halevi S;Smart P. Better bootstrapping in fully homomorphic encryption. Berlin:Springer-Verlag, 2012
  • [15] Brakerski Z;Vaikuntanathan V. Efficient fully homomorphic encryption from(standard) Lwe. Piscataway,NJ:IEEE, 2011
  • [16] ZDNet. Google to begin offering encrypted search. http://www.zdnet.co.uk, 2013-08-20
  • [17] Cohen J;Fischer M. A robust and verifiable cryptographically secure election scheme (Extended Abstract). Piscataway,NJ:IEEE, 1985
  • [18] Coron S;Mandal A;Naccache D. Fully homomorphic encryption over the integers with shorter public keys. Berlin:Springer-Verlag, 2011
  • [19] Gentry C;Halevi S. Fully homomorphic encryption without squashing using depth 3 arithmetic circuits. Piscataway,NJ:IEEE, 2011
  • [20] Chase M;Lauter K;Benaloh J. Patient controlled encryption:Patient privacy in electronic medical records. New York:ACM, 2009
  • [21] Li Zhi;Zhu Xinglei;Lian Yong. Constructing secure content dependent watermarking scheme using homomorphic encryption. Piscataway,NJ:IEEE, 2007
  • [22] Paillier P. Public-key cryptosystems based on composite degree residuosity classes. Berlin:Springer-Verlag, 1999
  • [23] Melchor C;Gaborit P. A lattice-based computationally efficient private information retrieval protocol. http://eprint.iacr.org/2007/446, 2012-12-09
  • [24] Lipmaa H. An Oblivious transfer protocol with log-squared communication. Berlin:Springer-Verlag, 2005
  • [25] Goldwasser S;Kharchenko D. Proof of plaintext knowledge for the Ajtai-Dwork cryptosystem. Berlin:Springer-Verlag, 2005
  • [26] Goldwasser S;Micali S. Probabilistic encryption and how to play mental poker keeping secret all partial information. New York:ACM, 1982
  • [27] Kawachi A;Tanaka K;Xagawa K. Multi bit cryptosystems based on lattice problems. Berlin:Springer-Verlag, 2007
  • [28] Lauter K;Naehrig M;Vaikuntanathan V. Can homomorphic encryption be practical. New York:ACM, 2011
  • [29] 周永彬. 同态密码学研究进展. 北京:电子工业出版社, 2011
  • [30] Damgard I;Jurik M. A generalization,a simplification and some applications of Pailliers probabilistic public-key system. Berlin:Springer-Verlag, 2001
查看更多︾
相似文献 查看更多>>
18.234.51.17