登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
以数据为中心的智慧城市研究综述
  • 摘要

    在城市信息化浪潮与数据科学崛起的共同推动下,智慧城市开始在全球范围内成为未来城市发展的新理念与新实践.大数据、数据活化、数据挖掘等数据管理、应用与分析技术在智慧城市建设当中具有核心作用.站在信息科学的视角之上,围绕以数据为中心这一主题,对当前智慧城市研究工作的最新动态进行了综述.梳理了当前智慧城市相关研究中广泛采用的城市数据类型及其特点,并从相关研究工作和技术与研究特点两个大的方面对该领域的研究工作现状进行了介绍.其中相关研究涵盖了技术体系研究、数据驱动的智能交通、城市计算技术和城市人类活动的统计力学等方面.而技术与研究特点的介绍包括核心技术与理论,以及领域研究的学科交叉、城市数据为中心、区域特性等方面.最后对该研究领域未来可能的发展方向进行了总结和展望.

  • 作者

    王静远  李超  熊璋  单志广  Wang Jingyuan  Li Chao  Xiong Zhang  Shan Zhiguang 

  • 作者单位

    北京航空航天大学计算机学院 北京 100191/北京航空航天大学计算机学院 北京 100191;北京航空航天大学深圳研究院数据活化(智慧城市)深圳市重点实验室 广东深圳 518057/国家信息中心信息化研究部 北京100045

  • 刊期

    2014年2期 ISTIC EI PKU

  • 关键词

    智慧城市  城市计算  大数据  数据活化  研究进展  Smart City  urban computing  big data  data vitalization  research advance 

参考文献
  • [1] 赖丽萍. 城市轨道交通网络鲁棒性研究. 北京交通大学, 2012
  • [2] 冷彪,赵文远. 基于客流数据的区域出行特征聚类. 计算机研究与发展, 2014,12
  • [3] 周涛,韩筱璞,闫小勇,杨紫陌,赵志丹,汪秉宏. 人类行为时空特性的统计力学. 电子科技大学学报, 2013,4
  • [4] 北京市公共汽车交通网络几何性质的实证研究. 复杂系统与复杂性科学, 2005,2
  • [5] 李英,周伟,郭世进. 上海公共交通网络复杂性分析. 系统工程, 2007,1
  • [6] 倪明选,罗吴蔓. 数据爆炸时代的技术变革. 中国计算机学会通讯, 2011,7
  • [7] Wei FAN,Zhengyong CHEN,Zhang XIONG,Hui CHEN. The Internet of data: a new idea to extend the IOT in the digital world. 中国计算机科学前沿, 2012,6
  • [8] Biao LENG,Jiabei ZENG,Zhang XIONG,Weifeng LV,Yueliang WAN. Probability tree based passenger flow prediction and its application to the Beijing subway system. 中国计算机科学前沿, 2013,2
  • [9] ZHAO Zhi-Dan,XIA Su,SHANG Ming-Sheng,ZHOU Tao. Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System. 中国物理快报(英文版), 2011,6
  • [10] Xiaolong LI,Gang PAN,Zhaohui WU,Guande QI,Shijian LI,Daqing ZHANG,Wangsheng ZHANG,Zonghui WANG. Prediction of urban human mobility using large-scale taxi traces and its applications. 中国计算机科学前沿, 2012,1
  • [11] LU Huapu,SHI Ye. Complexity of Public Transport Networks. 清华大学学报(英文版), 2007,2
  • [12] HONG Wei,HAN Xiao-Pu,ZHOU Tao,WANG Bing-Hong. Heavy-Tailed Statistics in Short-Message Communication. 中国物理快报(英文版), 2009,2
  • [13] Bazzani A;Giorgini B;Rambaldi S. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. Journal of Statistical Mechanics:Theory and Experiment, 2010,5
  • [14] Riccardo G;Armando B;Sandro R. Towards a statistical physics of human mobility. {H}International Journal of Modern Physics C-Physics and Computers, ,9
  • [15] Gallotti R;Bazzani A;Esposti Mirko D. Entropic measures of individual mobility patterns. 2013
  • [16] RothC;KangSoongM;BattyM. Structure of urban movements:polycentric activity and entangled hierarchical flows. PLoS One, 2011,1
  • [17] Barria Javier A;Thajchayapong Suttipong. Detection and classification of traffic anomalies using microscopic traffic variables. IEEE Trans on Intelligent Transportation Systems, 2011,3
  • [18] Yan Xiaoyong;Han Xiaopu;Wang Binghong. Diversity of individual mobility patterns. 2012
  • [19] Simini F;González Marta C;Maritan A. A universal model for mobility and migration patterns. {H}NATURE, 2012,7392
  • [20] Liang Xiao;Zhao Jichang;Dong Li. Unraveling the origin of exponential law in intra-urban human mobility. 2013
  • [21] Yan Xiaoyong;Zhao Chen;Fan Ying. Universal predictability of mobility patterns in cities. 2013
  • [22] Jiang Bin;Yin Junjun;Zhao Sijian. Characterizing the human mobility pattern in a large street network. {H}Physical Review E, 2009,2
  • [23] Liang Xiao;Zheng Xudong;Lv Weifeng. The scaling of human mobility by taxis is exponential. Physica A:Statistical Mechanics and its Applications, 2012,5
  • [24] Rambaldi Sandro;Bazzani Armando;Giorgini Bruno. Mobility in modern cities:looking for physical laws. 2007
  • [25] Yuan Xiaoru. Thememap. http://vis.pku.edu.cn/weibova/thememap, 2013-10-11
  • [26] Xiong Zhang;Luo Wuman;Chen Lei. Data vitalization:a new paradigm for large-scale dataset analysis. Piscataway,NJ:IEEE, 2010
  • [27] Yuan Yuanming;Qin Xue;Wu Chanle. Architecture and data vitalization of smart city. Advanced Materials Research, 2012
  • [28] Mei Lin;Cai Xuan;Zhang Hongzhou. Video structured description— vitalization techniques for the surveillance video data. {H}Berlin:Springer-Verlag, 2012
  • [29] 北京市交通委委员会. 实时路况查询. http://eye.bjjtw.gov.cn/Web-T_ bjjt_ new/Main.html, 2013-10-11
  • [30] Bardess Group Ltd. Data revitalization. http://www.bardess.com/pages/solutions/datamanagement-data-revitalization.html, 2013-10-11
  • [31] Song Chaoming;Qu Zehui;Blumm Nicholas. Limits of predictability in human mobility. {H}SCIENCE, 2010,5968
  • [32] Gonzalez Marta C;Hidalgo Cesar A;Barabasi AlbertLaszlo. Understanding individual human mobility patterns. {H}NATURE, 2008,7196
  • [33] Wu Ye;Zhou Changsong;Xiao Jinghua. Evidence for a bimodal distribution in human communication. {H}Proceeding of the National Academy of Sciences, 2010,44
  • [34] Calabrese F;Colonna M;Lovisolo P. Real-time urban monitoring using cell phones:A case study in Rome. IEEE Trans on Intelligent Transportation Systems, 2011,1
  • [35] Brockmann D;Hufnagel L;Geisel T. The scaling laws of human travel. {H}NATURE, 2006,7075
  • [36] Barabasi A. The origin of bursts and heavy tails in human dynamics. {H}NATURE, 2005,7039
  • [37] Cajueiro Daniel O. Optimal navigation for characterizing the role of the nodes in complex networks. Physica A:Statistical Mechanics and its Applications, 2010,9
  • [38] Zhang Jianhua;Xu Xiaoming;Hong Liu. Networked analysis of the shanghai subway network,in china. Physica A:Statistical Mechanics and its Applications, 2011,23
  • [39] Liu Liang;Andris Clio;Ratti Carlo. Uncovering cabdrivers' behavior patterns from their digital traces. {H}Computers Environment and Urban Systems, 2010,6
  • [40] Wikipedia. Floating car data. http://en.wikipedia.org/wiki/Floating_car_data, 2013 10-11
  • [41] Zheng Kai;Zheng Yu;Yuan Nicholas Jing. On Discovery of Gathering Patterns from Trajectories. Los Alamitos,CA:IEEE Computer Society, 2013
  • [42] Li Bin;Zhang Daqing;Sun Lin. Hunting or waiting?discovering passenger-finding strategies from a large-scale real-world taxi dataset. Piscataway,NJ:IEEE, 2011
  • [43] Sun Lin;Zhang Daqing;Chen Chao. Real time anomalous trajectory detection and analysis. Mobile Networks and Applications, 2013,3
  • [44] Harrison C;Eckman B;Hamilton R. Foundations for smarter cities. {H}IBM Journal of Research and Development, 2010,4
  • [45] Ge Yong;Liu Chuanren;Xiong Hui. A taxi business intelligence system. New York:ACM, 2011
  • [46] Zheng Xudong;Liang Xiao;Xu Ke. Where to wait for a taxi. New York:ACM, 2012
  • [47] Kanoulas E;Du Yang;Xia Tian. Finding fastest paths on a road network with speed patterns. Piscataway,NJ:IEEE, 2006
  • [48] Gühnemann A;Sch(a)fer R-P;Thiessenhusen K-U. Monitoring traffic and emissions by floating car data,ITSWP-04-07. Institute of Transport Studies Working Paper, 2004
  • [49] Yuan Jing;Zheng Yu;Xie Xing. Driving with knowledge from the physical world. New York:ACM, 2011
  • [50] Yuan Jing;Zheng Yu;Xie Xing. T-drive:Enhancing driving directions with taxi drivers' intelligence. {H}IEEE Transactions on Knowledge and Data Engineering, 2013,1
  • [51] Pfoser D;Brakatsoulas S;Brosch P. Dynamic travel time provision for road networks. New York:ACM, 2008
  • [52] Zheng Yu;Chen Yukun;Li Quannan. Understanding transportation modes based on GPS data for web applications. ACM Trans on the Web, 2010,1
  • [53] Zheng Yu;Li Quannan;Chen Yukun. Understanding mobility based on GPS data. New York:ACM, 2008
  • [54] Zheng Yu;Liu Like;Wang Longhao. Learning transportation mode from raw GPS data for geographic applications on the web. New York:ACM, 2008
  • [55] Wikipedia. Big data. http://en.wikipedia.org/wiki/Big_data, 2013-10-11
  • [56] Fabritiis C;Ragona R;Valenti G. Traffic estimation and prediction based on real time floating car data. Piscataway,NJ:IEEE, 2008
  • [57] Castro Pablo S;Zhang Daqing;Li Shijian. Urban traffic modelling and prediction using large scale taxi GPS traces. 2012
  • [58] Gonzalez Hector;Han Jiawei;Li Xiaolei. Adaptive fastest path computation on a road network:a traffic mining approach. New York:VLDB Endowment, 2007
  • [59] Ziebart Brian D;Maas Andrew L;Dey Anind K. Navigate like a cabbie:Probabilistic reasoning from observed context aware behavior. New York:ACM, 2008
  • [60] Yuan Jing;Zheng Yu;Zhang Liuhang. Where to find my next passenger. New York:ACM, 2011
  • [61] Ceapa I;Smith C;Capra L. Avoiding the crowds:understanding tube station congestion patterns from trip data. New York:ACM, 2012
  • [62] Balan Rajesh K;Nguyen Khoa X;Jiang Lingxiao. Realtime trip information service for a large taxi fleet. New York:ACM, 2011
  • [63] Lathia N;Capra L. Mining mobility data to minimise travellers' spending on public transport. New York:ACM, 2011
  • [64] Hao Jiuyue;Li Chao;Kim Zuwhan. Spatio temporal traffic scene modeling for object motion detection. IEEE Trans on Intelligent Transportation Systems, 2013,1
  • [65] Nam T;Pardo T A. Conceptualizing smart city with dimensions of technology,people,and institutions. New York:ACM, 2011
  • [66] Yuan Nicholas Jing;Xie Xing;Zheng Yu. T-Finder:A recommender system for finding passengers and vacant taxis. {H}IEEE Transactions on Knowledge and Data Engineering, 2012,1
  • [67] Harsanyi John C;Selten R. A General Theory of Equilibrium Selection in Games,volume 1. {H}Cambridge,MA:The MIT Press, 1988
  • [68] Chen Chao;Zhang Daqing;Samuel Pablo. Real-time detection of anomalous taxi trajectories from GPS Traces. {H}Berlin:Springer-Verlag, 2012
  • [69] Chen Chao;Zhang Daqing;Castro Pablo S. IBOAT:Isolation based online anomalous trajectory detection. IEEE Trans on Intelligent Transportation Systems, 2013,2
  • [70] Zhang Daqing;Li Nan;Zhou Zhihua. IBAT:Detecting anomalous taxi trajectories from GPS traces. New York:ACM, 2011
  • [71] 张大庆;陈超;杨丁奇. 从数字脚印到城市计算. {H}中国计算机学会通讯, 2013,8
  • [72] Chen Chao;Zhang Daqing;Zhou Zhihua. B-planner:Night bus route planning using large-scale taxi GPS traces. 2013
  • [73] Chourabi H;Nam T;Walker S. Understanding smart cities:An integrative framework. Piscataway,NJ:IEEE, 2012
  • [74] Kindberg T;Chalmers M;Paulos E. Guest editors' introduction:Urban computing. {H}IEEE PERVASIVE COMPUTING, 2007,3
  • [75] Shklovski I;Chang Michele F. Guest editors' introduction:Urban computing-navigating space and context. {H}COMPUTER, 2006,9
  • [76] Zheng Yu;Liu Yanchi;Yuan Jing. Urban computing with taxicabs. New York:ACM, 2011
  • [77] Ma Shuo;Zheng Yu;Wolfson O. T-Share:A large-scale dynamic taxi ridesharing service. Piscataway,NJ:IEEE, 2013
  • [78] Chawla S;Zheng Yu;Hu Jiafeng. Inferring the root cause in road traffic anomalies. Piscataway,NJ:IEEE, 2012
  • [79] Peng Chengbin;Jin Xiaogang;Wong Ka-Chun. Collective human mobility pattern from taxi trips in urban area. PloS One, 2012,4
  • [80] Wang Zuchao;Lu Min;Yuan Xiaoru. Visual traffic jam analysis based on trajectory data. {H}IEEE Transactions on Visualization and Computer Graphics, 2013,12
  • [81] Puissant A;Hirsch J;Weber C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. {H}International Journal of Remote Sensing, 2005,4
  • [82] Seto Karen C;Fragkias M. Quantifying spatiotemporal patterns of urban land-use change in four cities of china with time series landscape metrics. {H}Landscape Ecology, 2005,7
  • [83] Yuan Jing;Zheng Yu;Xie Xing. Discovering regions of different functions in a city using human mobility and POIs. New York:ACM, 2012
  • [84] Stefanov William L;Ramsey Michael S;Christensen Philip R. Monitoring urban land cover change:.an expert system approach to land cover classification of semiarid to arid urban centers. {H}Remote Sensing of Environment, 2001,2
  • [85] Chen D;Stow DA;Gong P. Examining the effect of spatial resolution and texture window size on classification accuracy:An urban environment case. {H}International Journal of Remote Sensing, 2004,11
  • [86] Yue Yang;Wang Handong;Hu Bo. Exploratory calibration of a spatial interaction model using taxi GPS trajectories. {H}Computers Environment and Urban Systems, 2012,2
  • [87] Bastani F;Huang Yan;Xie Xing. A greener transportation mode:flexible routes discovery from GPS trajectory data. New York:ACM, 2011
  • [88] Liu Siyuan;Liu Yunhuai;Ni Lionel M. Towards mobility-based clustering. New York:ACM, 2010
  • [89] Van de Voorde T;Jacquet W;Canters F. Mapping form and function in urban areas:An approach based on urban metrics and continuous impervious surface data. {H}Landscape and Urban planning, 2011,3
  • [90] Zhang Wangsheng;Li Shijian;Pan Gang. Mining the semantics of origin-destination flows using taxi traces. New York:ACM, 2012
  • [91] Pan Gang;Qi Guande;Wu Zhaohui. Land-use classification using taxi GPS traces. IEEE Trans on Intelligent Transportation Systems, 2013,1
  • [92] Soto V;Frás-martnez E. Robust land use characterization of urban landscapes using cell phone data. Pittsburgh:Citeseer, 2011
  • [93] Pacifici F;Chini M;Emery William J. A neural network approach using multi-scale textural metrics from very highresolution panchromatic imagery for urban land-use classification. {H}Remote Sensing of Environment, 2009,6
  • [94] Luck M;Wu Jianguo. A gradient analysis of urban landscape pattern:A case study from the phoenix metropolitan region,arizona,usa. {H}Landscape Ecology, 2002,4
  • [95] Bram J;McKay A. The evolution of commuting patterns in the New York City metro area. Current Issues in Economics and Finance, 2005,10
  • [96] Zhang Fuzheng;Wilkie David;Zheng Yu. Sensing the pulse of urban refueling behavior. New York:ACM, 2013
  • [97] Momtazpour M;Butler P;Hossain M Shahriar. Coordinated clustering algorithms to support charging infrastructure design for electric vehicles. New York:ACM, 2012
  • [98] 郑宇. 城市计算与大数据. {H}中国计算机学会通讯, 2013,8
  • [99] Tulusan J;Staake;Fleisch E. Providing eco-driving feedback to corporate car drivers:what impact does a smartphone application have on their fuel efficiency. New York:ACM, 2012
  • [100] Pozdnoukhov A;Kaiser C. Space-time dynamics of topics in streaming text. New York:ACM, 2011
  • [101] 郑宇. 城市计算. {H}中国计算机学会通讯, 2013,8
  • [102] Zheng Yu;Liu Furui;Hsieh Hsun-Ping. U-air:When urban air quality inference meets big data. New York:ACM, 2013
  • [103] O'sullivan Arthur. Urban Economics. New York:McGraw-Hill/Irwin, 2007
  • [104] Karamshuk D;Noulas A;Scellato S. Geo-spotting:Mining online location based services for optimal retail store placement. New York:ACM, 2013
  • [105] Porta S;Latora V;Wang F. Street centrality and the location of economic activities in barcelona. {H}URBAN STUDIES, 2012,7
  • [106] Porta S;Latora V;Wang F. Street centrality and densities of retail and services in Bologna,Italy. {H}Environment and Planning B:Planning and Design, 2009,3
  • [107] Davics J J;Beresford Alastair R;Hopper Andy. Scalable,distributed,real-time map generation. {H}IEEE PERVASIVE COMPUTING, 2006,4
  • [108] Cao Lili;Krumm J. From GPS traces to a routable road map. New York:ACM, 2009
  • [109] Fathi A;Krumm J. Detecting road intersections from GPS traces. {H}Berlin:Springer-Verlag, 2010
  • [110] 863计划"智慧城市(一期)”项目组. 智慧城市技术白皮书(2012).
  • [111] Watts Duncan J;Strogatz Steven H. Collective dynamics of "small-world" networks. {H}NATURE, 1998,6684
  • [112] Barabási Albert-László;Albert Réka. Emergence of scaling in random networks. {H}SCIENCE, 1999,5439
  • [113] Latora V;Marchiori M. Is the Boston subway a smallworld network. Physica A:Statistical Mechanics and its Applications, 2002,1
  • [114] Sen P;Dasgupta S;Chatterjee A. Small-world properties of the Indian railway network. {H}Physical Review E, 2003,3
  • [115] 中华人民共和国国务院. 国务院关于印发大气污染防治行动计划的通知. http://www.gov.cn/zwgk/2013-0 9/12/content_2486773.htm, 2013-10-11
  • [116] Seaton Katherine A;Hackett Lisa M. Stations,trains and small-world networks. Physica A:Statistical Mechanics and its Applications, 2004,3
  • [117] Derrible S;Kennedy C. Evaluating,comparing,and improving metro networks. Transportation Research Record:Journal of the Transportation Research Board, 2010,1
  • [118] Qi Guande;Li Xiaolong;Li Shijian. Measuring social functions of city regions from large-scale taxi behaviors. Piscataway,N J:IEEE, 2011
  • [119] Jung Woo-Sung;Wang Fengzhong;Stanley Eugene. Gravity model in the Korean highway. {H}Europhysics Letters, 2008,4
  • [120] Lee K;Jung Woo-Sung;Park Jong Soo. Statistical analysis of the metropolitan seoul subway system:Network structure and passenger flows. Physica A:Statistical Mechanics and its Applications, 2008,24
  • [121] Soh H;Lim S;Zhang Tianyou. Weighted complex network analysis of travel routes on the Singapore public transportation system. Physica A:Statistical Mechanics and Its Applications, 2010,24
  • [122] Veloso M;Phithakkitnukoon S;Bento C. Urban mobility study using taxi traces. New York:ACM, 2011
  • [123] Pan Gang;Qi Guande;Zhang Wangsheng. Trace analysis and mining for smart cities:Issues,methods,and applications. {H}IEEE Communications Magazine, 2013,6
  • [124] Pang Linsey Xiaolin;Chawla Sanjay;Liu Wei. On mining anomalous patterns in road traffic streams. {H}Berlin:Springer-Verlag, 2011
  • [125] Pang Linsey Xiaolin;Chawla S;Liu Wei. On detection of emerging anomalous traffic patterns using GPS data. {H}Data & Knowledge Engineering, 2013,9
  • [126] Pan Bei;Zheng Yu;Wilkie David. Crowd sensing of traffic anomalies based on human mobility and social media. New York:ACM, 2013
  • [127] Carleer A P;Wolff E. Urban land cover multi-level regionbased classification of VAR data by selecting relevant features. {H}International Journal of Remote Sensing, 2006,6
  • [128] Deng Jin S;Wang Ke;Hong Yang. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. {H}Landscape and Urban planning, 2009,3
  • [129] Lu Dengsheng;Weng Qihao. Urban classification using full spectral information of landsat ETM+ imagery in merino county,indiana. {H}Photogrammetric Engineering & Remote Sensing, 2005,11
  • [130] Herold M;Liu XiaoHang;Clarke Keith C. Spatial metrics and image texture for mapping urban land use. {H}Photogrammetric Engineering & Remote Sensing, 2003,9
查看更多︾
相似文献 查看更多>>
18.206.241.26