登录 | 注册 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
大数据应用的现状与展望
参考文献
  • [1] 梅宏,王千祥,张路,王戟. 软件分析技术进展. 计算机学报, 2009,9
  • [2] 孟小峰,慈祥. 大数据管理:概念、技术与挑战. 计算机研究与发展, 2013,1
  • [3] 高明,金澈清,王晓玲,田秀霞,周傲英. 数据世系管理技术研究综述. 计算机学报, 2010,3
  • [4] 宋国杰,唐世渭,杨冬青,王腾蛟. 数据流中异常模式的提取与趋势监测. 计算机研究与发展, 2004,10
  • [5] 覃雄派,王会举,李芙蓉,李翠平,陈红,周烜,杜小勇,王珊. 数据管理技术的新格局??. 软件学报, 2013,2
  • [6] 桂卫华,刘晓颖. 基于人工智能方法的复杂过程故障诊断技术. 控制工程, 2002,4
  • [7] 李德仁,王树良,李德毅,王新洲. 论空间数据挖掘和知识发现的理论与方法. 武汉大学学报(信息科学版), 2002,3
  • [8] Gantz J;Reinsel D. Extracting value from chaos. IDC iView, 2011
  • [9] Manyika J;Chui M;Brown B. Big data:The next frontier for innovation,competition,and productivity. McKinsey Global Institute, 2011
  • [10] Ghemawat S;Gobioff H;Leung S T. The google file system. New York:ACM, 2003
  • [11] Dean J;Ghemawat S. Mapreduce:Simplified data processing on large clusters. {H}Communications of the ACM, 2008,01
  • [12] Hey A J;Tansley S;Tolle K M. The Fourth Paradigm:Dataintensive Scientific Discovery. New York:Microsoft Research, 2009
  • [13] Laney D. 3D data management:Controlling data volume,velocity and variety. META Group Research, 2001
  • [14] Zikopoulos P;Eaton C. Understanding big data:Analytics for enterprise class hadoop and streaming data. New York:McGraw-Hill Osborne Media, 2011
  • [15] Meijer E. The world according to linq. {H}Communications of the ACM, 2011,10
  • [16] Mark B. Gartner says solving big data challenge involves more than just managing volumes of data. Gartner Retrieved, 2011
  • [17] 维克托·迈尔-舍恩伯格;肯尼思·库克耶;盛杨燕;周涛. 大数据时代. {H}杭州:浙江人民出版社, 2013
  • [18] Team O R. Big Data Now:Current Perspectives from O'Reilly Radar. Sebastopol:O'Reilly Media, 2011
  • [19] Cukier K. Data,data everywhere. The Economist, 2010,8671
  • [20] Grobelnik M. Big data tutorial. http://videolectures.net/eswc2012 grobelnik big data/, 2013-08-17
  • [21] Hand D J. Principles of data mining. {H}DRUG SAFETY, 2007,07
  • [22] Thusoo A;Shao Z;Anthony S;et ai. Data warehousing and analytics infrastructure at facebook. New York:ACM, 2010
  • [23] Goodhope;Ken. Building LinkedIn's Real-time Activity Data Pipeline. Data Engineering, 2012,02
  • [24] Drowning in numbers-digital data will flood the planet-and help us understand it better.The economist. http://www.economist.com/blogs/dailychart/2011/11/bigdata-0, 2013-07-13
  • [25] Ren Z;Xu X;Wan J. Workload characterization on a production Hadoop cluster:A case study on Taobao. Piscataway,NJ:IEEE, 2012
  • [26] Boulon J;Konwinski A;Qi R. Chukwa,a large-scale monitoring system. 2008
  • [27] What Analytics,Data mining,Big Data software you used in the past 12 months for a real project. http://www.kdnuggets.com/polls/2012/analytics-data-miningbig-data-software.html, 2013-07-11
  • [28] Sallam J H R L;Richardson J;Hostmann B. Magic quadrant for business intelligencc platforms. Stamford,CT:Gartncr Group, 2011
  • [29] Economist T. Beyond the pc,Special Report on Personal TEchnology. http://www.economist.com/node/21531109, 2013-07-16
  • [30] Agrawal P B D;Bertino E. Challenges and opportunities with big data. Washington,DC:The Computing Research Association,CRA Report, 2012
  • [31] Salton G. Automatic Text Processing. Reading.MA:Addison Wesley, 1989
  • [32] Manning C D;Schutze H. Foundations of Statistical Natural Language Processing. {H}Cambridge,MA:The MIT Press, 1999
  • [33] Ritter A;Clark Mausam S;Etzioni O. Named entity recognition in tweets:An experimental study. Stroudsburg,PA:ACL, 2011
  • [34] Li Y;Hu X;Lin H. A framework for semisupervised feature generation and its applications in biomedical literature mining. IEEE/ACM Trans on Computational Biology and Bioinformatics, 2011,02
  • [35] Lohr S. The age of big data. {H}The New York Times, 2012-11
  • [36] Blei D M. Probabilistic topic models. {H}Communications of the ACM, 2012,04
  • [37] Balinsky H;Balinsky A;Simske S J. Automatic text summarization and small-world networks. New York:ACM, 2011
  • [38] Mishra M;Huan J;Bleik S. Biomedical text categorization with concept graph representations using a controlled vocabulary. New York:ACM, 2012
  • [39] Hu J;Fang L;Cao Y. Enhancing text clustering by leveraging wikipedia semantics. New York:ACM, 2008
  • [40] Maybury M T. New Directions in Question Answering. {H}Cambridge,MA:The MIT Press, 2004
  • [41] Pang B;Lee L. Opinion mining and sentiment analysis. Found Trends in Information Retrieval, 2008,1/2
  • [42] Pal S;Talwar V;Mitra P. Web mining in soft computing framework:Relevance,state of the art and future directions. {H}IEEE Transactions on Neural Networks, 2002,05
  • [43] Chakrabarti S. Data mining for hypertext:A tutorial survey. SIGKDD Explorations Newsletter, 2000,02
  • [44] Brin S;Page L. The anatomy of a large-scale hypertextual Web search engine. {H}Computer Networks and ISDN Systems, 1998,01
  • [45] Konopnicki D;Shmueli O. W3qs:A query system for the worldwide Web. San Francisco,MA:Morgan Kaufmann, 1995
  • [46] Noguchi Y. Following digital breadcrumbs to big data gold. http://www.npr.org/2011/11/29/142521910/thedigitalbreadcrumbs-that-leadto-big-data, 2013-05-21
  • [47] Chakrabarti S;van den Berg M;Dom B. Focused crawling:S new approach to topic-specific Web resource discovery. {H}Computer Networks, 1999,11-16
  • [48] Ding D;Metze F;Rawat S. Beyond audio and video retrieval:Towards multimedia summarization. 2012
  • [49] Lew M S;Sebe N;Djeraba C. Content-based multimedia information retrieval:State of the art and challenges. ACM Trans on Multimedia Computing Communications and Applications, 2006,01
  • [50] Park Y J;Chang K N. Individual and group behavior-based customer profile model for personalized product recommendation. {H}Expert systems with application, 2009,02
  • [51] Ma Z;Yang Y;Cai Y. Knowledge adaptation for ad hoc multimedia event detection with few exemplars. New York:ACM, 2012
  • [52] Hirsch J E. An index to quantify an individual's scientific research output. Proc of the National Academy of Sciences of the United States of America, 2005,46
  • [53] Watts D J. Six Degrees:The Science of a Connected Age. New York:WW Norton & Company, 2004
  • [54] Aggarwal C C. An introduction to social network data analytics. {H}Berlin:Springer-Verlag, 2011
  • [55] Scellato S;Noulas A;Mascolo C. Exploiting place features in link prediction on location-based social networks. New York:ACM, 2011
  • [56] Ninagawa A;Eguchi K. Link prediction using probabilistic group models of network structure. New York:ACM, 2010
  • [57] Noguchi N. The search for analysts to make sense of big data. http://www.npr.org/2011/11/30/142893065/the-searchforanalysts-tomake-sense-of-big-data, 2013-05-11
  • [58] Dunlavy D M;Kolda T G;Acar E. Temporal link prediction using matrix and tensor factorizations. ACM Trans on Knowledge Discovery from Data, 2011,02
  • [59] Leskovec J;Lang K J;Mahoney M. Empirical comparison of algorithms for network community detection. New York:ACM, 2010
  • [60] Du N;Wu B;Pei X. Community detection in largescale social networks. New York:ACM, 2007
  • [61] Garg S;Gupta T;Carlsson N. Evolution of an online social aggregation network:An empirical study. New York:ACM, 2009
  • [62] Allamanis M;Scellato S;Mascolo C. Evolution of a locationbased online social network:Analysis and models. New York:ACM, 2012
  • [63] Gong N Z;Xu W;Huang L. Evolution of socialattribute networks:Measurements,modeling,and implications using google+. New York:ACM, 2012
  • [64] Zheleva E;Sharara H;Getoor L. Co-evolution of social and affiliation networks. New York:ACM, 2009
  • [65] Tang J;Sun J;Wang C. Social influence analysis in large-scale networks. New York:ACM, 2009
  • [66] Li Y;Chen W;Wang Y. Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships. New York:ACM, 2013
  • [67] Lappas T;Liu K;Terzi E. Finding a team of experts in social networks. New York:ACM, 2009
  • [68] Big data. {H}NATURE, 2008
  • [69] Zhang T;Popescul A;Dom B. Linear prediction models with graph regularization for web-page categorization. New York:ACM, 2006
  • [70] Zhou Y;Cheng H;Yu J X. Graph clustering based on structural/attribute similarities. Proc of the VLDB Endowment, 2009,01
  • [71] Dai W;Chen Y;Xue G R. Translated learning:Transfer learning across different feature spaces. 2008
  • [72] Rabbath M;Sandhaus P;Boll S. Multimedia retrieval in social networks for photo book creation. New York:ACM, 2011
  • [73] Shridhar S;Lakhanpuria M;Charak A. Snair:A framework for personalised recommendations based on social network analysis. New York:ACM, 2012
  • [74] Maniu S;Cautis B. Taagle:Efficient,personalized search in collaborative tagging networks. New York:ACM, 2012
  • [75] Cisco. Cisco visual networking index:Global mobile data traffic forecast update,2012c2017. http://doc.mbalib.com/view/4d7d1101d4ba076636d19080594cc1b.html, 2013-08-15
  • [76] Rhee Y;Lee J. On modeling a model of mobile community:Designing user interfaces to support group interaction. Interactions, 2009,06
  • [77] HanJ;Lee J G;Gonzalez H. Mining massive rfid,trajectory,and traffic data sets. New York:ACM, 2008
  • [78] Paolacci G;Chandler J;Ipeirotis P. Running experiments on amazon mechanical turk. Judgment and Decision Making, 2010,05
  • [79] Pecial online collection:Dealing with big data. Scinece, 2011
  • [80] Finin T;Murnane W;Karandikar A. Annotating named entities in Twitter data with crowdsourcing. Los Alamitos,CA:Association for Computational Linguistics, 2010
  • [81] Corbett J C;Dean J;Epstein M. Spanner:Google's globally-distributed database. {H}ACM Transactions on Computer Systems, 2013,03
  • [82] Shute J;Oancea M;Ellner S. F1:The fault-tolerant distributed RDBMS supporting google's ad business. New York:ACM, 2012
  • [83] Fact sheet:Big data across the federal government. http://www.whitehouse.gov/sites/default/files/microsites/ostp/big data fact sheet 3292012.pdf, 2013-08-07
查看更多︾
相似文献 查看更多>>
3.227.252.54