登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
识别网络论坛中有影响力用户
  • 摘要

    网络论坛已经成为网络用户发布信息的重要渠道.在论坛中对热点话题的讨论影响着物理世界中人们的看法、观点以及国家政策法规的制定.由此提出一系列研究问题:如何计算用户影响力?不同主题不同时间下用户影响力如何比较?用户影响力发展趋势如何?根据幂律规律,大量用户形成“长尾”,如何识别有影响力用户?以主题为单位,提取用户间回复关系,构建用户对话关联图,回复次数和回复长度形成用户行为特征,入度和出度形成网络结构特征.在Pagerank算法基础上,结合用户行为特征以及用户间关联网络特征,提出基于多属性的用户影响力排序算法(multiple attributes rank,MAR).并依据发表时间进行时间段切分,得到论坛上每日有影响力用户排行榜,进一步分析了有影响力用户演化趋势.以天涯网络论坛真实数据进行实验,从多角度评价有影响力用户以及MAR排序算法,得到一些有趣结论并对未来工作进行了展望.

  • 作者

    张玥  张宏莉  张伟哲  卢珺珈  Zhang Yue  Zhang Hongli  Zhang Weizhe  Lu Junjia 

  • 作者单位

    哈尔滨工业大学计算机网络与信息安全技术研究中心 哈尔滨 150001

  • 刊期

    2013年10期 ISTIC EI PKU

  • 关键词

    网络论坛  影响力  排序  用户行为  关联网络  演化  network BBS  influence  rank  user's behavior  relational network  evolution 

参考文献
  • [1] 陈小飞,王轶彤,冯小军. 一种基于网页质量的PageRank算法改进. 计算机研究与发展, 2009,z2
  • [2] 刘凯鹏,方滨兴. 一种基于社会性标注的网页排序算法. 计算机学报, 2010,6
  • [3] Tang Jie;Sun Jimeng;Wang Chi. Social influential analysis in large-scale networks. Piscataway,NJ:IEEE, 2009
  • [4] Pai A;Counts S. Identifying topical authorities in microblogs. New York:ACM, 2011
  • [5] Kempe D;Kleinberg J;Tardos E. Maximizing the spread of influence through a social network. New York:ACM, 2003
  • [6] Chen Wei;Wang Chi;Wang Yajun. Scalable influence maximization for prevalent viral marketing in large-scale social networks. New York:ACM, 2010
  • [7] Ilyas MU;Shafiq MZ;Liu AX. A distributed and privacy preserving algorithm for identifying information hubs in social networks. New York:ACM, 2011
  • [8] Yang Xiwang;Guo Y;Liu Yong. Bayesian-inference based recommendation in online social networks. New York:ACM, 2011
  • [9] Liu Bin;Terlecky P. Optimizing information credibility in social swarming applications. {H}IEEE Transactions on Parallel and Distributed Systems, 2012,06
  • [10] Keller E;Berry J. The Influentials:One American in Ten Tells the Other Nine How to Vote,Where to Eat,and What to Buy. {H}New York:The Free Press, 2003
  • [11] Brin D;Page L. The anatomy of a large-scale hypertexualWeb search engine. {H}Computer Networks and ISDN Systems, 1998,02
  • [12] Lescovec J;Backstrom L;Kleinberg J. Meme-tracking and the dynamics of the news cycle. New York:ACM, 2009
  • [13] Albert R;Barabasi AL. Statistical Mechanics of Complex Networks. {H}Reviews of Modern physics, 2002,01
  • [14] Opsahl T;Agnessens T;Skvoretz J. Node centrality in weighted networks:Generalizing degree and shortest paths. {H}SOCIAL NETWORKS, 2010,03
  • [15] Kleinberg J. Authoritative sources in a hyperlinked environment. {H}Journal of the ACM, 1999,05
  • [16] Bharat K;Mihaila G. When experts agree:Using nonaffiliated experts to rank popular topics. ACM Trans on Information Systems, 2002,01
  • [17] Weng J;Lim E P;Jiang J. Twitterrank:Finding topic-sensitive influential twitterers. New York:ACM, 2010
  • [18] Cha M;Haddadi H;Benevenuto F. Measuring user influence on twitter:The million follower fallacy. New York:ACM, 2010
  • [19] Bakshy E;Hofman J M;Mason W A. Everyone's an influencer:Quantifying influence on twitter. New York:ACM, 2011
  • [20] Matsumura N;Ohsawa Y;Ishizuka M. Influence diffusion model in text-based communication. Transactions of the Japanese Society for Artificial Intelligence, 2002,03
  • [21] Agarwal N;Liu Huan;Tang Lei. Identifying the influential bloggers in a community. New York:ACM, 2008
  • [22] Shi Xiaolin;Leskovec J;McFarland D A. Citing for high impact. New York:ACM, 2010
查看更多︾
相似文献 查看更多>>
18.208.187.169