登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
基于Map Reduce的封闭数据立方
  • 摘要

    为提高海量级数据仓库分析过程中的数据查询效率,研究基于MapReduce并行处理技术的数据立方构建技术,提出了全局封闭数据立方体的生成算法以及其上的查询处理算法.实验和分析结果表明该算法充分发挥了集群系统的并行处理能力,可以高效地生成全局封闭数据立方体,并且该立方体的存储空间减少了将近40%.其上查询算法的复杂度和网络代价均非常小.

  • 作者

    冷芳玲  鲍玉斌  于戈  高伟  Leng Fangling  Bao Yubin  Yu Ge  Gao Wei 

  • 作者单位

    东北大学信息科学与工程学院,沈阳,110819

  • 刊期

    2011年z2期 ISTIC EI PKU

  • 关键词

    数据仓库  封闭数据立方  MapReduce 

参考文献
  • [1] 游进国,奚建清,张平健,刘艳霞. 在PC集群上的封闭立方体计算. 计算机科学, 2009,6
  • [2] 李盛恩,王珊. 封闭数据立方体技术研究. 软件学报, 2004,8
  • [3] 万至臻. 基于MapReduce模型的并行计算平台的设计与实现. 浙江大学, 2008
  • [4] Dong Xin;Jiawei Han;Xiaolei Li;Zheng Shao;Wah B.W.. Computing Iceberg Cubes by Top-Down and Bottom-Up Integration: The StarCubing Approach. IEEE Transactions on Knowledge and Data Engineering, 2007,1
  • [5] Brezany P;Hofer J;Tjoa A M. Towards an open service architecture for data mining on the grid. Los Alamitos.CA:IEEE Computer Society, 2003
  • [6] Agarwal S;Agrawal R;Deshpande P M. On the computation of multidimensional aggregates. San Francesco:Morgan Kaufmann, 1996
  • [7] Zhao Y;Deshpande P M;Naughton J F. An array-based algorithm for simultaneous multidimensional. New York:ACM, 1997
  • [8] Ross K A;Srivastava D. Fast computation of sparse datacubes. San Francesco:Morgan Kaufmann, 1997
  • [9] Harinarayan V;Rajaraman A;Ullman J D. Implementing data cubes efficiently. New York:ACM, 1996
  • [10] Shukla A;Deshpande P M;Naughton J F. Materialized view selection for multidimensional datasets. San Francesco:Morgan Kaufmann, 1998
  • [11] Beyer K;Ramakrishnan R. Bottom-Up computation of sparse and iceberg CUBEs. New York:ACM, 1999
  • [12] Xin Dong. Star-Cubing:Computing iceberg cubes by top-down and bottom-up integration. San Francisco:Morgan Kaufmann Publishers, 2003
  • [13] Shao Zheng;Han Jiawei;Xin Dong. MM-Cubing:Computing Iceberg cubes by factorizing the lattice space. Los Alamitos.CA:IEEE Computer Society, 2004
  • [14] Wu K;Otoo K;Shoshani A. On the performance of bitmap indices for high cardinality attributes. San Francesco:Morgan Kaufmann, 2004
  • [15] Lakshmanan L V S;Pei J;Han J W. Quotient cube:How to summarize the semantics of a data cube. San Francesco:Morgan Kaufmann, 2002
  • [16] Jeffrey Dean;Sanjay Ghemawat. MapReduce:Simplified data processing on large clusters. 2004
  • [17] Li X;Han J;Gonzalez H. High-Dimensional 0LAP:A minimal cubing approach. San Francesco:Morgan Kaufmann, 2004
  • [18] Riedewald M;Agrawal D;Abbadi A. Flexible data cubes for online aggregation. Beilin:Springer-Verlag, 2001
  • [19] Jian Z L;Srivastava J. Efficient aggregation algorithms for compressed data warehouses. IEEE Transactions on Knowledge and Data Engineering, 2002,03
  • [20] Xin D;Han J;Li X. Star-cubing:Computing iceberg cubes by top-down and bottom-up integration. San Francesco:Morgan Kaufmann, 2003
  • [21] Wang W;Lu H;Feng J. Condensed cube:An effective approach to reducing data cube size. Los Alamitos.CA:IEEE Computer Society, 2002
  • [22] Sismanis Y;Deligiannakis A;Kotidis Y. Hierarchical dwarfs for the rollup cube. New York:ACM, 2003
  • [23] Chen Y;Dehne F;Eavis T. Parallel ROLAP data cube construction on shared-nothing multiprocessors. Distributed and Paralleled Databases, 2004,03
查看更多︾
相似文献 查看更多>>
54.167.47.248