登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
基于兴趣点特征提取的医学图像分类
  • 摘要

    医学图像分类是图像挖掘的一个重要研究领域.图像特征提取的质量直接影响分类的结果.针对着这种情况,提出了一种基于兴趣点的图像特征提取方法,首先通过滑动窗口区域的灰度变化提取图像的兴趣点,然后通过计算兴趣点邻域的方向测度提取特征数据,并用支持向量机(SVM)进行分类.实验结果显示,该特征在医学图像分类实验中取得了很好的效果.

  • 作者

    吴霜  张一飞  修非  王大玲  鲍玉斌  于戈  Wu Shuang  Zhang Yifei  Xiu Fei  Wang Daling  Bao Yubin  Yu Ge 

  • 作者单位

    东北大学信息科学与工程学院,沈阳,110004

  • 刊期

    2007年z3期 ISTIC EI PKU

  • 关键词

    医学图像  分类  特征提取  支持向量机 

参考文献
  • [1] 万华林,Morshed U.Chowdhury. 基于支持向量机的图像语义分类. 软件学报, 2003,11
  • [2] B S Manjunath;J R Ohm;V V Vasudevan. Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 2001,06
  • [3] S Wang;W Y Zhu;Z P Liang. Shape deformation:SVM regression and application to medical image segmentation. Vancouver,Canada, 2001
  • [4] D Anguelov;B Taskarf;V hatalbashev. Discriminative learning of Markov random fields for segmentation of 3D scan data. San Diego,California,USA, 2005
  • [5] S Li;T Fevens;A Krzyzak. A SVM-based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets. Chicago,USA, 2004
  • [6] H Drucker;C J C Burges;L Kaufman. Support vector regression machines. Advanced in Neural Information Processing Systems, 1997
  • [7] C Chih-Chung;L Chih-Jen. LIBSVM:A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001
  • [8] G M Fung;O L Mangasarian. A feature selection Newton method for support vector machine classification. Computational Optimization and Applications, 2004,02
  • [9] V N Vapnik. The Nature of Statistical Learning Theory. New York:wiley, 1998
  • [10] Y X Chen;J Z Wang. Image categorization by learning and reasoning with regions. Journal of MACHINE LEARNING RESEARCH, 2004,08
  • [11] G M Foody;A Mathur. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 2004,06
  • [12] Yongmin Li;Shaogang Gong;Heather M Liddell. Support vector regression and classification based multi-view face detection and recognition. Grenoble,France, 2000
  • [13] L H Zhao;Y Cai;J H Li. Face recognition based on discrete cosine transform and support vector machine. 北京, 2005
  • [14] B Heisele;P Ho;T Poggio. Face recognition with support vector machines:Global versus component-based approach. Vancouver,Canada, 2001
查看更多︾
相似文献 查看更多>>
3.208.22.127