登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
一个通用的混合非线性规划问题的演化算法
  • 摘要

    提出了一种新的求解非线性规划问题的演化算法.它是在郭涛算法的基础上提出来的,新算法的主要特点是引入了变维子空间,加入了子空间搜索过程和规范化约束条件以及增加了处理带等式约束的实数规划、整数规划、O-1规划和混合整数规划问题的功能,使之成为一种求解非线性规划(NLP)问题的通用算法.数值实验表明,新算法不仅是一种通用的算法,而且与已有算法的计算结果相比,其解的精确度也最好.

  • 作者

    康卓  李艳  刘溥  康立山 

  • 作者单位

    武汉大学软件工程国家重点实验室,武汉,430072;武汉大学计算中心,武汉,430072

  • 刊期

    2002年11期 ISTIC EI PKU

  • 关键词

    非线性规划问题  演化算法  郭涛算法 

参考文献
  • [1] Jun He;Lishan Kang. On the convergence rates of genetic algorithms. Theoretical Computer Science, 1999
  • [2] E Sandgren. Nonlinear integer and discrete programming in mechanical design. ASME Journal of Mechanical Design, 1990,02
  • [3] J F Fu;R G Fenton;W L Cleghorn. A mixed integer-discretecontinuous programming method and its application to engineering design optimization. Engineering Optimization, 1991,03
  • [4] B K Kannan;S N Kramer. An augmented lagrange multiplier based method for mixed inger discrete continuous optimization and its applications to mechanical design. Journal of Mechanical Design,Transactions of the ASME, 1994,02
  • [5] Y J Cao;Q H Wu. Mechanical design optimization by mixedvariable evolutionary programming. Indianapolis:IEEE Press, 1997
  • [6] Yung-Chien Lin. A hybrid method of evolutionary algorithms for mixed-integer nonlinear optimization problem. Piscataway,NJ:IEEE Press, 1999
  • [7] A Carlos. Cello Cello: Self-adaptive penalties for GA-based optimization. Washington:IEEE Press, 1999
  • [8] W Hock;K Schittkowski. Test Examples for Nonlinear Programming Codes. New York:Springer Verlag, 1981
  • [9] Z Michalewicz. Evolutionary operators for continuous convex parameters spaces. River Edge,NJ..World Scientific, 1994
  • [10] 倪勤. SAS最优化软件速成. 北京:科学出版社, 1998
  • [11] Z Michalewicz;T Logan;S Swaminathan. Evolutionary operations for continuous convex parameter space. River Edge,NJ:World Scientific, 1994
  • [12] A J Keane. Experience with optimizers in structural design. The Conf on Adaptive Computing Engineering Design and Control, PEDC, Plymouth, 1994
  • [13] M A El-Beltagy;P B Nair;A J Keane. Metamodeling techniques for evolutionary optimization of computationally expensive problems: Promise and limits. San Francisco:Morgan Kaufmann, 1999
  • [14] 钱颂迪. 运筹学. 北京:清华大学出版社, 1990
  • [15] Z Michalewicz. Genetic algorithms,numerical optimization,and constraints. Cambridge,MA:MIT Press, 1995
  • [16] Z Michalewicz. Handling constraints in genetic algorithms. Los Altos:MorganKaufmann, 1991
  • [17] D Powell;M M Skolnick. Using genetic algorithms in engineering design optimization with nonlinear constraints. San Meteo:Morgan Kaufmann, 1993
  • [18] N Srinivas;K Deb. Multiobjective function optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994,03
  • [19] J Paredis. Co-evolutionary constraint satisfaction. River Edge,NJ:World Scientific, 1994
  • [20] R G Reynolds. An introduction to cultural algorithms. River Edge,NJ:World Scientific, 1994
  • [21] Z Michalewicz;G Nazhiyath. Genocop Ⅲ: A co-evolutionary algorithms for numerical optimization problems with nonlinear constraints. Perth:IEEE Press, 1995
  • [22] Z Michalewicz;N Attia. Evolutionary optimization of constrained problems. River Edge,NJ:World Scientific, 1994
  • [23] GuoTao;Kang Lishan. A new Evolutionary Algorithm for Function Optimization. Journal of Wuhan University(Natural Science Edition), 1999,04
  • [24] Kalyanmoy Deb. GeneAS:A robust optimal design technique for mechanical component design. Evolutionary Algorithm in Engineering Application.Berlin:Springer-Verlag, 1997
查看更多︾
相似文献 查看更多>>
54.173.237.152