登录 | 注册 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
具有偏序属性的偏爱犘犪狉犲狋狅占优关系
  • 摘要

    犓个目标的多目标优化问题的经典Pareto最优前沿通常是犓-1维的,当犓>3时,父亲群体和儿子群体常常全都非劣,以致于多目标演化算法无法进行优胜劣汰操作而失效。文中提出一种具有偏序属性的新型Pareto占优关系,称之为偏爱Pareto占优。它能够缩小Pareto集合的规模,因而只要用偏爱Pareto占优关系替代原有的经典占优关系,现有的多目标算法就可以有效地求解“很多”目标的优化问题。

  • 作者

    曾三友  秦莎  李长河  张青  丁立新 

  • 作者单位

    中国地质大学计算机学院 武汉 430074/黄冈师范学院计算机学院 湖北黄冈 438000/武汉大学软件工程国家重点实验室 武汉 430072

  • 刊期

    2014年9期 ISTIC EI PKU

  • 关键词

    多目标演化算法  多目标优化  偏序关系 

参考文献
  • [1] Laumanns M;Thiele L;Deb K;Zitzler E. Combining convergence and diversity in evolutionary multiobj ective opti-mization. Evolutionary Computation, 2002,03
  • [2] Evan J H. Radar waveform optimisation as a many-objective application benchmark. Matsushima,Japan, 2007
  • [3] Kukkonen S;Deb K. A fast and effective method for pruning of non-dominated solutions in many-obj ective problems. Reykjavik,Iceland, 2006
  • [4] Brockhoff D;Zitzler E. Are all objectives necessary?On dimensionality reduction in evolutionary multiobj ective opti-mization. Berlin,Germany, 2006
  • [5] Kang Zhuo;Kang Li-Shan;Zou Xiu-Fen. A new evolutionary decision theory for many-obj ective optimization problems. Wuhan,China, 2007
  • [6] Farina M;Amato P. A fuzzy definition of“optimality”for many-criteria optimization problems. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans, 2004,03
  • [7] Sato H;Aguirre H;Tanaka K. Controlling dominance area of solutions and its impact on the performance of MOEAs. Matsushima,Japan, 2007
  • [8] Koppen M;Yoshida K. Substitute distance assignments in NSGAII for handling many-obj ective optimization problems. Matsushima,Japan, 2007
  • [9] Corne D;Knowles J. Techniques for highly multiobjective optimization:Somenondominatedpointsarebetterthanothers. London,UK, 2007
  • [10] Zhang Q;Li H. MOEA/D:A multi-obj ective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007,06
  • [11] Coello C A C. Evolutionary Algorithms for Solving Multi-Objective Problems. New York:Kluwer Academic Publishers, 2002
  • [12] Jaszkiewicz A. On the performance of multiple-objective geneticlocalsearchonthe0/1 knapsackproblem-Acompara-tiveexperiment. IEEETransactionsonEvolutionaryComputa-tion, 2002,04
  • [13] Kukkonen S;Member S;Lampinen J. Ranking-dominanceand many-obj ective optimization. Singapore, 2007
  • [14] Hughes E J. Evolutionary many-objective optimisation:Many once or one many. Edinburgh,Scotland, 2005
  • [15] Hernandez G R;Coello C A. MOMBI:A new metaheuristic for many-objective optimization based on the R2 indicator. Cancun,Mexico, 2013
  • [16] Wang Rui;Purshouse R C;Fleming P J. Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2013,04
  • [17] Zitzler E;Laumanns M;Thiele L. SPEA2:Improving the strength Pareto evolutionary algorithm. ETH Zentrum,Gloriastrasse 35,CH-8092 Zurich,Switzerland.TIK-Report:103, 2001
  • [18] Zhou Ai-Min;Zhang Qing-Fu;Jin Yao-Chu. Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, 2009,05
  • [19] Knowles J D. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization [. University of Reading,Reading UK, 2002
  • [20] Khare V;Yao X;Deb K. Performance scaling of multiobjec-tive evolutionary algorithms. Lecture Notes in Computer Science,Faro,Portugal, 2003
  • [21] Deb K;Pratap A;Agarwal S;Meyarivan T. A fast and elitist multi-objective genetic algorithm NSGA-II. IEEE Transactions on Evolutionary Computation, 2002,02
  • [22] Corne D W;Knowles J D;Oates MJ. The Pareto envelope-based selection algorithm for multiobjective optimization. Paris,France, 2000
  • [23] Zitzler E;Laumanns M;Thiele L. SPEA2:Improving the strength pareto evolutionary algorithm. Athens,Greece, 2002
  • [24] Purshouse R C;Fleming P J. Evolutionary multi-objective optimisation:An exploratory analysis. Canberra,Australia, 2003
  • [25] Branke J. Guidance in evolutionary multi-obj ective optimiza-tion. Advances in EngineeringSoftware, 2001,06
  • [26] Ishibuchi H;Nojima Y. Optimization of scalarizing functions through evolutionary multiobjective optimization. Matsushima,Japan, 2007
  • [27] Hisa I;Noritaka T;Yusuke N. Evolutionary many-objective optimization:A short review. Hong Kong,China, 2008
查看更多︾
相似文献 查看更多>>
3.233.221.149