登录 | 注册 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
稀疏局部保持投影
  • 摘要

    LASSO(LeastAbsoluteShrinkageandSelectionOperator)是1范数和2范数混合学习的一种理论框架,基于LASSO提出了局部保持投影的稀疏回归算法SpLPP及其广义的正则化形式RSpLPP,并从理论上证明了所提模型的收敛性及求解算法,给出了算法的复杂性分析。所提算法同时具有特征选择、降维的特性,在有监督学习、无监督学习两种任务情况下,都可以应用该算法。在人工数据集和真实数据集上进行的大量仿真实验,取得了较好的结果,证明了所提算法的有效性。

  • 作者

    郑忠龙  黄小巧  贾竳  杨杰 

  • 作者单位

    浙江师范大学计算机系浙江金华321004/上海交通大学图像处理与模式识别研究所上海200040

  • 刊期

    2014年9期 ISTIC EI PKU

  • 关键词

    稀疏学习  局部保持投影  流行学习  正则化 

参考文献
  • [1] Turk M;Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,01
  • [2] Li Y;Cichocki A;Amari S. Blind estimation of channel parameters and source components for eeg signals:A sparse factorization approach. IEEE Transactions on Neural Networks, 2006,02
  • [3] Zou H;Hastie T;Tibshirani R. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 2006,02
  • [4] Moghaddam B;Weiss Y;Avidan S. Generalized spectral boundsforsparseLDA. New York,USA, 2006
  • [5] Wu M;Zhang L;Wang Z. Sparse linear discriminant analysis for simultaneous testing for the significance of a gene set pathway and gene selection. Bioinformatics, 2009,09
  • [6] Plan Y;Vershynin R. Robust 1-bit compressed sensing and sparse logistic regression:A convex programming approach. IEEE Transactions on Information Theory, 2013,01
  • [7] Jalali A;Ravikumar P;Sanghavi S. A dirty model for multiple sparse regression. IEEE Transactions on Information Theory, 2013,12
  • [8] Ikehata S;Wipf D;Matsushita Y;Aizawa K. Robust photo-metric stereo using sparse regression. Tokyo,Japan, 2012
  • [9] Belhumeur P;Hespanha J;Kriegman D. Eigenfaces vs. fisherfaces:Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 1997,07
  • [10] Belkin M;Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003,06
  • [11] Golub G H;Van Loan C F. Matrix Computations. Baltimore,Maryland:The Johns Hopkins University Press, 1996
  • [12] Horn R A;Johnson C R. Matrix Analysis. Edinburgh:Cambridge University Press, 1985
  • [13] Elden L. Algorithms for the regularization of ill-conditioned least squares problems. BIT Numerical Mathematics, 1997,02
  • [14] Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2007,04
  • [15] Ji S;Xue Y;Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008,06
  • [16] Angelosante D;Giannakis G;Sidiropoulos N. Sparse para-metric models for robust non stationary signal analysis:Leveraging the power of sparse regression. IEEE Signal Processing Magazine, 2013,06
  • [17] Sepulcre Y;Trigano T;Ritov Y. Sparse regression algorithm for activity estimation in spectrometry. IEEE Transactions on Signal Processing, 2013,17
  • [18] Tan M;Tsang I;Wang L. Minimax sparse logistic regression forveryhigh-dimensionalfeatureselection. IEEETransactions on Neural Networks and Learning Systems, 2013,10
  • [19] Hegde C;Wakin M;Baraniuk R. Random projections for manifold learning. Vancouver,Canada, 2007
  • [20] Meinshausen N;Yu B. LASSO-type recovery of sparse representations for high-dimensional data. The Annals of Statistics, 2008,01
  • [21] Tibshirani R. Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society, 1996,01
  • [22] He X;Yan S;Hu Y. Face recognition using laplacian-faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,03
  • [23] Malgouyres F;Zeng T. A predual proximal point algorithm solving a non negative basis pursuit denoising model. Inter-national Journal of Computer Vision, 2009,03
  • [24] Dai D;Yuen P. Regularized discriminate analysis and its application to face recognition. Pattern Recognition, 2003,03
  • [25] Friedman J. Regularized discriminate analysis. Journal of the American Statistical Association, 1989,405
  • [26] Ye J;Wang T. Regularized discriminant analysis for high dimensional,low sample size data. New York,USA, 2006
  • [27] Clemmensen L;Hastie T;Ersboll B. Sparse discriminant analysis. Technometrics, 2011,04
  • [28] Chen S;Donoho D;Saunders M. Atomic decomposition by basis pursuit. Journal of Scientific Computing on Signal Information and Monitoring, 1999,01
  • [29] Hyder M;Mahata K. An improved smoothed L0 approxima-tion algorithm for sparse representation. IEEE Transactions on Signal Processing, 2010,04
  • [30] Blumensath T;Davies ME. Gradient pursuits. IEEE Trans-actions on Signal Processing, 2008,06
  • [31] Combettes P;Pesquet J. Proximal thresholding algorithm for minimization over orthonormal bases. SIAMJournal on Optimization, 2007,04
  • [32] Zou H;Hastie T. Regularization and variable selection via elastic net. Journal of the Royal Statistical Society, 2005,02
  • [33] Smith K. Mind-reading with a brain scan. Nature, 2008
  • [34] Cai T T;Xu G;Zhang J. On recovery of sparse signals via L1 minimization. IEEE Transactions on Information Theory, 2009,07
  • [35] Zheng Z L;Yang J. Subcellular localization of gram-negative bacterial proteins using sparse learning. The Protein Journal, 2010,03
  • [36] Roweis S;Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000,5500
  • [37] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. 1995
  • [38] Candes E;Rudelson M;Tao T;Vershynin R. Error correc-tion via linear programming. Pittsburgh,USA, 2005
  • [39] Sanja F;Skocaj D;Leonardis A. Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,03
  • [40] Donoho D. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. CommunicationsonPureandAppliedMathematics, 2006,06
  • [41] Jiao L;Bo L;Wang L. Fast sparse approximation for least square support vector machine. IEEE Transactions on Neural Networks, 2007,03
  • [42] Abdallah S;Plumbley M. Unsupervised analysis of poly-phonic music by sparse coding. IEEE Transactions on Neural Networks, 2006,01
  • [43] Rodiguez P;Wohlberg B. An iterative reweighted norm algorithm for total variation regularization. Pacific,USA, 2006
查看更多︾
相似文献 查看更多>>
3.226.122.74