登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
在线社会网络的测量与分析
  • 摘要

    Facebook、Twitter、人人网和新浪微博等社交网站逐渐成为互联网上用户数量最多、最受欢迎的网站.近年来,国内外已有大量研究工作深入考察在线社会网络的拓扑结构和用户行为,这对理解人类的社会行为、改进现有的网站系统和设计新的在线社会网络应用具有重要意义.文中从测量角度对在线社会网络的拓扑结构、用户行为和网络演化等方面进行了综述,总结了常见的测量方法和典型的网络拓扑参数,着重介绍了用户行为特征、用户行为对网络拓扑的影响以及网络的演化.可以看出,随着研究的深入,在线社会网络的新特征逐渐被大家认识和理解,包括好友少的用户的交流范围集中在小部分好友,而好友多的用户联系的好友更均匀;用户之间的交互减小了在线社会网络的聚类系数,使网络结构更松散;边的生成受优先连接和临近偏倚的共同影响;小社团倾向于和大社团合并,大社团倾向于分裂为两个规模相当的小社团等.

  • 作者

    徐恪  张赛  陈昊  李海涛  XU Ke  ZHANG Sai  CHEN Hao  LI Hai-Tao 

  • 作者单位

    清华大学计算机科学与技术系 北京 100084;清华信息科学与技术国家实验室(筹) 北京 100084/清华大学计算机科学与技术系 北京 100084/西蒙弗雷泽大学计算科学学院 温哥华加拿大V5A1S6

  • 刊期

    2014年1期 ISTIC EI PKU

  • 关键词

    在线社会网络  测量  网络拓扑  用户行为  演化  社交网络  online social networks  measurement  network structure  user behavior  evolution  social networks 

参考文献
  • [1] 徐恪,朱敏,林闯. 互联网体系结构评估模型、机制及方法研究综述. 计算机学报, 2012,10
  • [2] 张赛,徐恪,李海涛. 微博类社交网络中信息传播的测量与分析. 西安交通大学学报, 2013,2
  • [3] Nowak MA. Five rules for the evolution of cooperation. Science, 2006,5805
  • [4] Raissa M. D'Souza;Christian Borgs;Jennifer T. Chayes;Noam Berger;Robert D. Kleinberg. Emergence of tempered preferential attachment from optimization. Proceedings of the National Academy of Sciences of the United States of America, 2007,15
  • [5] Andrei Broder;Ravi Kumar;Farzin Maghoul;Prabhakar Raghavan;Sridhar Rajagopalan;Raymie Stata;Andrew Tomkins;Janet Wiener. Graph Structure in the Web. Computer networks, 2000,1/6
  • [6] Kossinets G;Watts DJ;Watts DJ. Empirical analysis of an evolving social network. Science, 2006,5757
  • [7] Watts DJ.. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the United States of America, 2002,9
  • [8] Albert-Laszlo Barabasi;Reka Albert. Emergence of Scaling in Random Networks. Science, 1999,5439
  • [9] YouTube. http://www.youtube.com/t/press_statistics/
  • [10] Mossa S;Barthélémy M;Stanley H E;Amaral N. Truncation of power law behavior in "scale-free" network models due to information filtering. {H}Physical Review Letters, 2002,13
  • [11] Spearman C. The proof and measurement of association between two things. {H}The American Journal of Psychology, 1987,3/4
  • [12] Cha M;Rodriguez P;Crowcroft J. Watching television over an IP network. {H}New York,USA, 2008
  • [13] Newman M E J. Finding community structure in networks using the eigenvectors of matrices. {H}Physical Review E, 2006,3
  • [14] Bailey N. The Mathematical Theory of Infectious Deseases and Its Applications. London:Griffin, 1975
  • [15] Rodrigues T;Benevenuto F;Cha M. On word-of-mouth based discovery of the web. {H}New York,USA, 2011
  • [16] Social network aggregation. http://en.wikipedia.org/wiki/Social_network_aggregation/
  • [17] Gomez-Rodriguez M;Leskovec J;Krause A. Inferring networks of diffusion and influence. {H}New York,USA, 2010
  • [18] Ghosh R;Lerman K. Predicting influential users in online social networks. Washington,USA, 2010
  • [19] Scellato S;Mascolo C;Musolesi M;Crowcroft J. Track globally,deliver locally:Improving content delivery networks by tracking geographic social cascades. {H}New York,USA, 2011
  • [20] Wang D;Wen Z;Tong H. Information spreading in context. {H}New York,USA, 2011
  • [21] Galuba W;Aberer K;Chakraborty D. Outtweeting the twitterers-predicting information cascades in microblogs. Berkeley,USA, 2010
  • [22] Benevenuto F;Magno G;Rodrigues T;Almeida V. Detecting spammers on Twitter. Washington,USA, 2010
  • [23] Grier C;Thomas K;Paxson V;Zhang M. @spam:The underground on 140 characters or less. {H}New York,USA, 2010
  • [24] Chhabra S;Aggarwal A;Benevenuto F;Kumaraguru P. Phi.sh/oCiaL:The phishing landscape through short URLs. {H}New York,USA, 2011
  • [25] Wireshark. http://en.wikipedia.org/wiki/Wireshark/
  • [26] Gjoka M;Sirivianos M;Markopoulou A;Yang X W. Poking Facebook:Characterization of OSN applications. {H}New York,USA, 2008
  • [27] Berger N;Borgs C;Chayes J T. Competition-induced preferential attachment. Turku,Finland, 2004
  • [28] Szabo G;Huberman B A. Predicting the popularity of online content. {H}Communications of the ACM, 2010,8
  • [29] Gruhl D;Guha R;Nowell D L;Tomkins A. Information diffusion through blogspace. {H}New York,USA, 2004
  • [30] Granovetter M. Threshold models of collective behavior. {H}AMERICAN JOURNAL OF SOCIOLOGY, 1978,6
  • [31] Karsai M;Kivel(a) M;Pan R K. Small but slow world:How network topology and burstiness slow down spreading. {H}Physical Review E, 2011,2
  • [32] Steeg G V;Ghosh R;Lerman K. What stops social epidemics. Barcelona,Spain, 2011
  • [33] Leskovec J;Kleinberg J;Faloutsos C. Graphs over time:Densification laws,shrinking diameters and possible explanations. {H}New York,USA, 2005
  • [34] Sala A;Cao L;Wilson C. Measurement-calibrated graph models for social network experiments. {H}New York,USA, 2010
  • [35] Sniffer Pro. http://www.sniffer.net.cn/
  • [36] Li H T;Liu J C;Xu K;Wen S. Understanding video propa gation in online social networks. Piscataway,USA, 2012
  • [37] Ahn Y Y;Han S;Kwak H. Analysis of topological characteristics of huge online social networking services. {H}New York,USA, 2007
  • [38] Reliable E-mail. http://www.pittsburgh.intelresearch.net/projects/completed/reliable-email.html/
  • [39] Zhao X;Sala A;Wilson C. Multi-scale dynamics in a massive online social network. {H}New York,USA, 2012
  • [40] Leskovec J;Backstrom L;Kumar R;Tomkins A. Microscopic evolution of social networks. {H}New York,USA, 2008
  • [41] Watts D J. The "new" science of networks. {H}Annual Reviews of Sociology, 2004,1
  • [42] Mislove A;Koppula H S;Gummadi K P. Growth of the flicker social network. {H}New York,USA, 2008
  • [43] Adar E;Adamic L A. Tracking information epidemics in blogspace. Washington,USA, 2005
  • [44] Bakshy E;Karrer B;Adamic L A. Social influence and the diffusion of user-created content. {H}New York,USA, 2009
  • [45] Sun E;Rosenn I;Marlow C;Thomas L. Gesundheit!modeling contagion through Facebook news feed. San Jose,USA, 2009
  • [46] Newman M E J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 2001,2
  • [47] Gong N Z;Talwalkar A;Mackey L. Jointly predicting links and inferring attributes using a social-attribute network(SAN). {H}北京, 2012
  • [48] Lin Y R;Chi Y;Zhu S H. Facetnet:A framework for analyzing communities and their evolutions in dynamic networks. {H}北京, 2008
  • [49] Social network analysis software. http://en.wikipedia.org/wiki/Social_ net work_analysis_ soft ware/
  • [50] Li H T;Ma X Q;Wang F. On popularity prediction of videos shared in online social networks. San Francisco,USA, 2013
  • [51] Cha M;Kwak H;Rodriguez P. Analyzing the video popularity characteristics of large-scale user generated content systems. {H}IEEE/ACM Transactions on Networking, 2009,5
  • [52] Niu D;Liu Z;Li B C;Zhao S Q. Demand forecast and performance prediction in peer assisted on-demand streaming systems. Shanghai,China, 2011
  • [53] Gürsun G;Crovella M;Matta I. Describing and forecasting video access patterns. Shanghai,China, 2011
  • [54] Kutner M H;Nachtsheim C J;Neter J. Applied Linear Regression Models. New York:McGraw-Hill/Irwin, 2004
  • [55] Navot A;Shpigelman L;Tishby N;Vaadia E. Nearest neighbor based feature selection for regression and its application to neural activity. {H}Vancouver,Canada, 2006
  • [56] Backstrom L;Boldi P;Rosa M. Four degrees of separation. Evanston,USA, 2012
  • [57] Cyworld. http://www.hate.com/cymain/
  • [58] 中国互联网络信息中心(CNNIC)第31次《中国互联网络发展状况统计报告》. http://www.cnnic.net.cn/gywm/ xwzx/ rdxw/2012nrd/ 201301/ t20130115_38507.htm/
  • [59] Special:Micro blog's macro impact. http://www.chinadaily.com.cn/china/2011-03/02/content_ 12099500.htm/
  • [60] Microblogging in China. http://en.wikipedia.org/wiki/Microblogging_in_China/
  • [61] 这里需要与4.1节的对称性区分开,对称性强调好友关系,是静态的,相互性强调用户之间的交互,是动态的.
  • [62] Slashdot. http://www.slashdot.org/
  • [63] Wikipedia. http://en.wikipedia.org/
  • [64] Orkut. http://www.orkut.com/
  • [65] Daum. http://www.daum.net/
  • [66] Leskovec' publications. http://cs.stanford.edu/people/jure/pubs/
  • [67] Diggs. http://www.digg.com/
  • [68] Second Life. http://secondlife.com/
  • [69] Networking Group. http://odysseas.calit2.uci.edu/wiki/doku.php/public:online_social_networks/
  • [70] Yahoo! 360. http://360.yahoo.com/
  • [71] Dlicious. http://del.icio.us/
  • [72] Yahoo! Answers. http://answers.yahoo.com/
  • [73] Tantipathananandh C;Berger-Wolf T;Kempe D. A framework for community identification in dynamic social networks. {H}New York,USA, 2007
  • [74] Sun J;Faloutsos C;Papadimitriou S;Yu P S. GraphScope:Parameter-free mining of large time-evolving graphs. {H}New York,USA, 2007
  • [75] Google Co-op. http://www.google.com/coop/
  • [76] Kumar R;Novak J;Tomkins A. Structure and evolution of online social networks. {H}New York,USA, 2006
  • [77] Gong N Z;Xu W;Huang L. Evolution of socialattribute networks:measurements,modeling,and implications using Google+. {H}New York,USA, 2012
  • [78] Tantipathananandh C;Berger-Wolf T. Constant-factor approximation algorithms for identifying dynamic communities. {H}New York,USA, 2009
  • [79] Kim M S;Han J. A particle-and-density based evolutionary clustering method for dynamic networks. Proceedings of the VLDB Endowment, 2009,1
  • [80] Greene D;Doyle D;Cunningham P. Tracking the evolution of communities in dynamic social networks. Washington,USA, 2010
  • [81] Asur S;Parthasarathy S;Ucar D. An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Transactions on Knowledge Discovery from Data, 2009,4
  • [82] Allamanis M;Scellato S;Mascolo C. Evolution of a locationbased online social network:Analysis and models. {H}New York,USA, 2012
  • [83] PeerSpective. http://peerspective.mpi-sws.org/
  • [84] Flickr. http://www.flickr.com/
  • [85] LiveJournal. http://www.livejournal.com/
  • [86] LinkedIn. http:///www.linkedin.com/
  • [87] Leskovec J;Chakrabarti D;Kleinberg J. Kronecker graphs:An approach to modeling networks. The Journal of Machine Learning Research, 2010,3
  • [88] Kim M;Leskovec J. The network completion problem:Inferring missing nodes and edges in networks. Mesa,USA, 2011
  • [89] Mislove A;Marcon M;Gummadi K P. Measurement and analysis of online social networks. {H}New York,USA, 2007
  • [90] Stanford Network Analysis Project (SNAP). http://snap.stanford.edu/
  • [91] Jiang J;Wilson C;Wang X. Understanding latent interactions in online social networks. {H}New York,USA, 2010
  • [92] Garg S;Gupta T;Carlsson N;GMahanti A. Evolution of an online social aggregation network:An empirical study. {H}New York,USA, 2009
  • [93] Paxson V. Bro:A system for detecting network intruders in real-time. Computer Networks:The International Journal of Computer and Telecommunications Networking, 1999,23-24
  • [94] 汪小帆;李翔;陈关荣. 复杂网络理论及其应用. {H}北京:清华大学出版社, 2006
  • [95] Easley D;Kleinberg J. Networks,Crowds,and Markets:Reasoning about a Highly Connected World. {H}New York:Cambridge University Press, 2010
  • [96] Leskovec J;Lang K J;Dasgupta A;Mahoney M W. Statistical properties of community structure in large social and information networks. {H}New York,USA, 2008
  • [97] Benevenuto F;Rodrigues T;Cha M;Almeida V. Characterizing user behavior in online social networks. {H}New York,USA, 2009
  • [98] Scott J P. Social Network Analysis:A Handbook. London:SAGE Publications, 2000
  • [99] Freeman L C. The Development of Social Network Analysis:A Study in the Sociology of Science. Vancouver:Empirical Press, 2004
  • [100] Leskovec J;Horvitz E. Planetary-scale views on a large instant-messaging network. {H}New York,USA, 2008
  • [101] The Twitter Project Page at MPI-SWS. http://twitter.mpi-sws.org/
  • [102] Adamic L;Adar E. Friends and neighbors on the Web. {H}SOCIAL NETWORKS, 2003,3
  • [103] Park H W;Thelwall M. Hyperlink analyses of the World Wide Web:A review. {H}JOURNAL OF COMPUTER-MEDIATED COMMUNICATION, 2003,4
  • [104] 汪小帆;李翔;陈关荣. 网络科学导论. {H}北京:高等教育出版社, 2012
  • [105] Schneider F;Feldmann A;Krishnamurthy B;Willinger W. Understanding online social network usage from a network perspective. {H}New York,USA, 2009
  • [106] Wilson C;Boe B;Sala A. User interactions in social networks and their implications. {H}New York,USA, 2009
  • [107] Newman M E J. Assortative mixing in networks. {H}Physical Review Letters, 2002,20
  • [108] Chun H;Kwak H;Eom Y H. Comparison of online social relations in volume vs interaction:A case study of cyworld. {H}New York,USA, 2008
  • [109] Build with Twitter. https://dev.twitter.com/docs/streaming-apis/
  • [110] Axelrod R;Hamilton W D. The evolution of cooperation. {H}SCIENCE, 1981,4489
  • [111] Gouldner A W. The norm of reciprocity:A preliminary statement. {H}American Sociological Review, 1960,2
  • [112] Aukett R;Ritchie J;Mill K. Gender differences in friendship patterns. {H}SEX ROLES, 1988,1
  • [113] Thurnwald R. Economics in Primitive Communities. London:International Institute of African Languages and Cultures, 1932
  • [114] FriendFeed. http://www.friendfeed.com/
  • [115] Crandall D;Cosley D;Huttenlocher D. Feedback effects between similarity and social influence in online communities. {H}New York,USA, 2008
  • [116] MorenoJ L;Jennings H H. Who Shall Survive?:A New Approach to the Problem of Human Interrelations. Washington:Nervous and Mental Disease Publishing Coorperation, 1934
  • [117] Simmel G,Wolff K. The Sociology of Georg Simmel. New York:Free Press of Glencoe, 1950
  • [118] Hansen D;Shneiderman B;Smith M A. Analyzing Social Media Networks with NodeXL:Insights from a Connected World. San Francisco:Morgan Kaufmann Publishers, 2010
  • [119] Milgram S. The small world problem. {H}PSYCHOLOGY TODAY, 1967,1
  • [120] Newman M E J. The structure and function of complex networks. Society for Industrial and Applied Mathematics Review, 2003,2
  • [121] Facebook Developers. http://developers.facebook.com/docs/reference/apis/
  • [122] Barrat A;Barthélemy M;Pastor-Satorras R;Vespignani A. The architecture of complex weighted networks. {H}Proceedings of the National Academy of Sciences(USA), 2004,11
  • [123] Erd(o)s P;Rényi A. On random graphs,I. Publicationes Mathematicae, 1959
  • [124] Hemelrijk C K. Models of,and tests for,reciprocity,unidirectionality and other social interaction patterns at a group level. {H}Animal Behaviour, 1990,6
  • [125] Qiu T;Ge Z;Lee S. Modeling user activities in a large IPTV system. {H}New York,USA, 2009
  • [126] Nazir A;Raza S;Chuah C N. Unveiling Facebook:A measurement study of social network based applications. {H}New York,USA, 2008
  • [127] Watts D J;Strogatz S H. Collective dynamics of 'small-world' networks. {H}NATURE, 1998,6684
  • [128] Golder S;Wilkinson D M;Huberman B A. Rhythms of social interaction:Messaging within a massive online network. East Lansing,USA, 2007
  • [129] Nazir A;Raza S;Gupta D. Network level footprints of Facebook applications. {H}New York,USA, 2009
  • [130] 新浪微博开放平台. http://open.weibo.com/wiki/API文档_V2/
  • [131] Guo L;Tan E;Chen S. Analyzing patterns of user content generation in online social networks. {H}New York,USA, 2009
  • [132] Duarte F;Mattos B;Bestavros A. Traffic characteristics and communication patterns in blogosphere.Boston University,Boston:Technical Report BUCS-TR-2006-033. 2006
  • [133] Huberman B A;Pirolli P L T;Pitkow J E;Rajan M L. Strong regularities in world wide web surfing. {H}SCIENCE, 1998,5360
  • [134] Cha M;Mislove A;Adams B;Gummadi K P. Characterizing social cascades in flickr. {H}New York,USA, 2008
  • [135] Cha M;Mislove A;Gummadi K P. A measurement-driven analysis of information propagation in the flickr social network. {H}New York,USA, 2009
  • [136] Sastry N;Yoneki E;Crowcroft J. Buzztraq:Predicting geographical access patterns of social cascades using social networks. {H}New York,USA, 2009
  • [137] Gómez V;Kaltenbrunner A;López V. Statistical analysis of the social network and discussion threads in Slashdot. {H}New York,USA, 2008
  • [138] Granovetter M S. The strength of weak ties. {H}AMERICAN JOURNAL OF SOCIOLOGY, 1973,6
  • [139] Garlaschelli D;Loffredo M I. Patterns of link reciprocity in directed networks. {H}Physical Review Letters, 2004,26
  • [140] Bialik C. Sorry,you may have gone over your limit of network friends. The Wall Street Journal Online, 2007,11
  • [141] Zlatic V;Bozícevic M;Stefancíc H;Domazet M. Wikipedias:Collaborative web-based encyclopedias as complex networks. {H}Physical Review E, 2006,1
  • [142] Java A;Song X;Finin T;Tseng B. Why we Twitter:Understanding microblogging usage and communities. {H}New York,USA, 2007
  • [143] 人人网开放平台. http://wiki.dev.renren.com/wiki/API/
  • [144] Almaas E;Kovacs B;Vicsek T. Global organization of metabolic fluxes in the bacterium Escherichia coli. {H}NATURE, 2004,6977
  • [145] Wernicke S;Rasche F. FANMOD:A tool for fast network motif detection. {H}BIOINFORMATICS, 2006,9
  • [146] Dunbar R. Grooming,Gossip,and the Evolution of Language. {H}Cambridge:Harvard University Press, 1998
  • [147] Krishnamurthy B;Gill P;Arlitt M. A few chirps about Twitter. {H}New York,USA, 2008
  • [148] Nazir A;Waagen A;Vijayaraghavan V S. Beyond friendship:Modeling user activity graphs on social networkbased gifting applications. {H}New York,USA, 2012
  • [149] Cha M;Kwak H;Rodriguez P. I tube,you tube,everybody tubes:Analyzing the world's largest user generated content video system. {H}New York,USA, 2007
  • [150] Li H T;Liu J C;Wang H Y;Xu K. Video sharing in online social network:Measurement and analysis. {H}Toronto,Canada, 2012
  • [151] Derrida B;Flyvbjerg H. Statistical properties of randomly broken objects and of multivalley structures in disordered systems. {H}Journal of Physics A:Mathematical and General, 1987,15
  • [152] Milo R;Shen-Orr S;Itzkovitz S. Network motifs:Simple building blocks of complex networks. {H}SCIENCE, 2002,5594
  • [153] Milo R. Superfamilies of evolved and designed networks. {H}SCIENCE, 2004,5663
查看更多︾
相似文献 查看更多>>
3.214.184.196