登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
一种新型的层次化动态社区并行计算方法
  • 摘要

    文中提出了一种可并行分解的层次化动态社区发现算法D-SNCD(Dynamic Social Network Community Discovery).D- SNCD算法充分利用复杂动态社会网络变化的局部性,对算法生成的层次化社区树HOT( Hierarchical cOmmunity Tree)的分枝进行选择性更新.与传统的对动态社会网络直接采用快照方式进行社区发现相比,D-SNCD算法在效率上取得了明显的提高.由于D-SNCD是对已有的静态社区并行计算方法P-SNCD( Parallel Social Network Community Discovery)的进一步扩展,因而D-SNCD保持着P-SNCD算法的高扩展性和高分辨率等优点.另外,D-SNCD算法对用户参数输入要求简单.严格的数学证明和充分的实验数据保证了整个算法的正确性和有效性.

  • 作者

    林旺群  邓镭  丁兆云  吴泉源  贾焰  周斌  LIN Wang-Qun  DENG Lei  DING Zhao-Yun  WU Quan-Yuan  JIA Yan  ZHOU Bin 

  • 作者单位

    国防科学技术大学计算机学院 长沙410073

  • 刊期

    2012年8期 ISTIC EI PKU

  • 关键词

    社区发现  层次化社区结构  动态社会网络  并行计算  动态更新 

参考文献
  • [1] 林旺群,卢风顺,丁兆云,吴泉源,周斌,贾焰. 基于带权图的层次化社区并行计算方法. 软件学报, 2012,6
  • [2] 淦文燕,赫南,李德毅,王建民. 一种基于拓扑势的网络社区发现方法. 软件学报, 2009,8
  • [3] 何东晓,周栩,王佐,周春光,王喆,金弟. 复杂网络社区挖掘-基于聚类融合的遗传算法. 自动化学报, 2010,8
  • [4] 沈华伟,程学旗,陈海强,刘悦. 基于信息瓶颈的社区发现. 计算机学报, 2008,4
  • [5] 杨博,刘大有,LIU Jiming,金弟,马海宾. 复杂网络聚类方法. 软件学报, 2009,1
  • [6] Yang Bo;Cheung William;Liu Jiming. Community Mining from Signed Social Networks. IEEE Transactions on Knowledge and Data Engineering, 2007,10
  • [7] Newman MEJ. Detecting community structure in networks. The European physical journal, B. Condensed matter physics, 2004,2
  • [8] Tyler J R;Wilkinson D M;Huberman B A. Email as spectroscopy:Automated discovery of community structure within organizations. Dordrecht:kluwer Academic Publishers, 2003
  • [9] Flake G W;Lawrence S;Giles C L;Coetzee F M. Selforganization and identification of Web communities. IEEE Transaction on Computer, 2002,03
  • [10] Wu F;Huberman B A. Finding communities in linear time.A physics approach. the European Physical Journal B, 2004,02
  • [11] Palla G;Derenyi I;Farkas I;Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,7043
  • [12] Zhang Y Z;Wang J Y;Wang Y;Zhou L Z. Parallel community detection on large networks with propinquity dynamics. Paris,France:ACM, 2009
  • [13] Wasserman S;Faust K. Social Network Analysis. Cambridge:Cambridge University Press, 1994
  • [14] Pons P;Latapy M. Computing communities in large networks using random walks. Beilin:Springer-Verlag, 2005
  • [15] Yang B;Liu J. Discovering global network communities based on local centralities. ACM Transactions on the Web, 2008,01
  • [16] Newman M E J. Modularity and communities structure in networks. Proceedings of the National Academy of Sciences(USA), 2006,23
  • [17] Lin Y-R;Chi Y;Zhu S;Sundaram H,Tseng B L. Facetnet:A framework for analyzing communities and their evolutions in dynamic networks. 北京, 2008
  • [18] Fortunato S;Barthelemy M. Resolution limit in community detection. Proceedings of the National Academy of Sciences(USA), 2007,01
  • [19] Newman M E J;Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004,02
  • [20] 陈国良. 并行计算--结构、算法、编程. 北京:高等教育出版社, 2003
  • [21] Kwak H;Lee C;Park H;Moon S. What is Twitter,a social network or a news media . Raleigh,NC,USA, 2010
  • [22] Shiga M;Takigawa I;Mamitsuka H. A spectral clustering approach to optimally combining numerical vectors with a modular network. New York:acm Press, 2007
  • [23] Newman M E J. Fast algorithm for detecting community structure in networks. Physical Review E, 2004,06
  • [24] Guimera R;Amaral L A N. Functional cartography of complex metabolic networks. Nature, 2005,7028
  • [25] Zhang C-Q;Ou Y. Clustering,community partition and disjoint spanning trees. ACM Transactions on Algorithms, 2008,03
  • [26] Lin Yu-Ru;Sun Jimeng;Castro Paul;Konuru Ravi,Sundaram Hari,Kelliher Aisling. Parallel community detec tion on large networks with propinquity dynamics. Paris,France:ACM, 2009
  • [27] Kim Min-Soo;Han Jiawei. A particle-and-density based evolutionary clustering method for dynamic networks. PVLDB, 2009,01
查看更多︾
相似文献 查看更多>>
34.229.97.16