登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
模型检测规划中的状态之间的可达关系研究
  • 摘要

    当前,对基于模型检测规划研究的算法中存在大量的冗余计算,一些不可能参与构成解的状态动作序偶被反复筛选.文中给出了一种在不确定规划领域求规划解的新思路:在求规划解之前,找到不确定状态转移系统的状态之间的可达关系,从而根据状态之间的可达关系进行约简.提出了不确定状态转移系统的超图、超图的邻接矩阵和可达矩阵等概念,设计了用超图的邻接矩阵求不确定状态转移系统中状态之间可达关系的方法.利用不确定状态转移系统的超图、超图的邻接矩阵和状态之间的可达关系获得了关于弱规划解、强规划解和强循环规划解的一些重要性质.这些性质是关于一些状态动作序偶是否不可能参与构成弱规划解、强规划解和强循环规划解的结论.通过这些性质可以将大量的状态动作序偶直接去掉,从而大幅度简化求规划解的过程,提高求规划解效率.

  • 作者

    文中华  黄巍  刘任任  姜云飞  WEN Zhong-Hua  HUANG Wei  LIU Ren-Ren  JIANG Yun-Fei 

  • 作者单位

    湘潭大学信息工程学院 湖南湘潭 411105/中国科学技术大学计算机科学与技术学院 合肥 230027/中山大学软件研究所 广州 510275

  • 刊期

    2012年8期 ISTIC EI PKU

  • 关键词

    模型检测  不确定规划  超图  邻接矩阵  可达关系 

参考文献
  • [1] 吴康恒,姜云飞. 基于模型检测的领域约束规划. 软件学报, 2004,11
  • [2] Jameson A. Numerical uncertainty management in user and student modeling:An overview of systems and issues. User Modeling and User-Adapted Interaction, 1995,03
  • [3] Jensen R M;Veloso M M;Bowling M H. OBDD-based optimistic and strong cyclic adversarial planning. Lisbon,Portugal, 2001
  • [4] Bertoli P;Cimatti A. A framework for planning with extended goals under partial observability. Stanford,California:Stanford University, 2003
  • [5] Pistore M;Traverso P. Planning as model checking for extended goals in nondeterministic domains. Washington DC USA, 2001
  • [6] Bertoli P;Cimatti A. MBP:A model based planner. Washington DC USA, 2001
  • [7] Edelkamp S;Helmert M. The model checking integrated planning system. AI Magazine, 2001,03
  • [8] Bacchus F;Kabanza F. Using temporal logics to express search control knowledge for planning. Artificial Intelli gence, 2000,01
  • [9] Kabanza F;Barbeau M;St-Denis R. Planning control rules for reactive agents. Artificial Intelligence, 1997,01
  • [10] Cimatti A;Roveri M;Traverso P. Strong planning in nondeterministic domains via model checking. Pittsburgh Pennsylvania,USA, 1998
  • [11] Cimatti A;Roveri M;Traverso P. Automatic OBDD-based generation of universal plans in non-deterministic domains. Madison,USA, 1998
  • [12] Dal Lago U;Pistore M;Traverso P. Planning with a lan guage for extended goals. Stanford,California:Stanford University, 2002
  • [13] Vinnicombe G. Frequency domain uncertainty and the graph topology. IEEE Transactions on Automatic Control, 1993,09
  • [14] Ghallab M;Nau D;Traverso P. Automated Planning Theory and Practice. California:morgan Kaufmann Publishers, 2004
  • [15] Bertoli P;Cimatti A. Planning in nondeterministic domains under partial observability via symbolic model checking. Washington DC USA, 2001
  • [16] 陈世福;陈兆乾. 人工智能与知识工程. 南京:南京大学出版社, 1997
  • [17] Cimatti A;Pistore M. Weak,strong,and strong cyclic planning via symbolic model checking. Artificial Intelligence, 2003,01
  • [18] Jensen R M;Veloso M M. Guided symbolic universal planning. Stanford,California:Stanford University, 2003
  • [19] Pistore M;Bettin R. Symbolic techniques for planning with extended goals in non-deterministic domains. Lisbon,Portugal, 2001
  • [20] Daniele M;Traverso P. Strong cyclic planning revisited. Lancaster,UK, 1999
  • [21] Bertoli P;Cimatti A. Strong planning under partial observability. Artificial Intelligence, 2006,04
  • [22] Jensen R;Veloso M. OBDD-based universal planning for synchronized agents in non-deterministic domains. Journal of Artificial Intelligence Research, 2000
  • [23] Cimatti A;Roveri M. Conformant planning via symbolic model checking. Journal of Artificial Intelligence Research, 2000
  • [24] Huang W;Wen Z H. Observation reduction for strong plans. Hyderabad,India, 2007
  • [25] Bertoli P;Pistore M. Planning with extended goals and partial observability. Whistler,Canada, 2004
查看更多︾
相似文献 查看更多>>
34.229.97.16