登录 | 注册 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
计算机系统与计算机网络中的动态优化:模型、求解与应用
  • 摘要

    动态优化是计算机系统与计算机网络中进行资源分配与任务调度等方面研究所采用的主要理论工具之一.目前,国内外已开展大量研究,致力于深化动态优化的理论研究与工程应用.文中从模型、求解与应用3个角度,对马尔可夫决策过程动态优化理论模型进行了综述,并重点介绍了将动态优化理论与随机Petri网理论相结合的马尔可夫决策Petri网和随机博弈网模型,详细讨论了这些模型的建模方法、求解算法与一些应用实例.最后,对全文进行了总结,并对未来可能的研究方向进行了展望.

  • 作者

    林闯  万剑雄  向旭东  孟坤  王元卓  LIN Chuang  WAN Jian-Xiong  XIANG Xu-Dong  MENG Kun  WANG Yuan-Zhuo 

  • 作者单位

    清华大学计算机科学与技术系 北京100084/北京科技大学计算机与通信工程学院 北京100083/中国科学院计算技术研究所 北京100190

  • 刊期

    2012年7期 ISTIC EI PKU

  • 关键词

    动态优化  马尔可夫决策过程  随机Petri网  马尔可夫决策Petri网  随机博弈网 

参考文献
  • [1] 王元卓,林闯,程学旗,方滨兴. 基于随机博弈模型的网络攻防量化分析方法. 计算机学报, 2010,9
  • [2] Djonin D. V.;Krishnamurthy V.. MIMO Transmission Control in Fading Channels—A Constrained Markov Decision Process Formulation With Monotone Randomized Policies. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 2007,10
  • [3] Keqin Liu;Qing Zhao;Bhaskar Krishnamachari. Dynamic Multichannel Access With Imperfect Channel State Detection. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 2010,5
  • [4] Liming Liu;Yumao Lu. Dynamic traffic controls for Web-server networks. Computer networks, 2004,4
  • [5] Qing Zhao;Swami A.. A Decision-Theoretic Framework for Opportunistic Spectrum Access. IEEE wireless communications, 2007,4
  • [6] Chen Y.;Zhao Q.;Swami A.. Joint Design and Separation Principle for Opportunistic Spectrum Access in the Presence of Sensing Errors. IEEE Transactions on Information Theory, 2008,5
  • [7] Robert Givan;Sonia Leach;Thomas Dean. Bounded-parameter Markov decision processes. Artificial Intelligence: An International Journal, 2000,1/2
  • [8] Qing Zhao;Lang Tong;Ananthram Swami;Yunxia Chen. Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 2007,3
  • [9] Krishnamurthy V.;Djonin D. V.. Structured Threshold Policies for Dynamic Sensor Scheduling—A Partially Observed Markov Decision Process Approach. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 2007,10
  • [10] Murugesan S;Schniter P;Shroff N B. Multiuser scheduling in a Markov-modeled downlink using randomly delayed ARQ feedback. IEEE Transactions on Infomation Theory, 2012,02
  • [11] Wang Rui;Lau V K N;Huang Huang. Delay optimal power control and relay selection for two-hop cooperative OFDM systems via distributive stochastic learning. Austin,Texas,USA, 2010
  • [12] Karmokar Ashok K;Djonin Dejan V;Bhargava Vijay K. Optimal and suboptimal packet scheduling over correlated time varying flat fading channels. IEEE Transactions on Wireless Communications, 2006,02
  • [13] Sutton R S;Barto A G. Reinforcement Learning:An Introduction. Cambridge,ma:the Mit Press, 1998
  • [14] Haas Zygmunt;Halpern Joseph Y;Li Erran L;Wicker Stephen B. A decision-theoretic approach to resource allocation in wireless multimedia networks. New York,USA, 2000
  • [15] Rykov V V;Efrosinin D. Optimal control of queueing system with heterogeneous servers. Queueing Systems, 2004,3-4
  • [16] Maillart L M;Cassady C R;Rainwater C;Schneider K. Selective maintenance decision-making over extended planning horizons. IEEE Transactions on Reliability, 2009,03
  • [17] Ji Shihao;Parr R;Carin L. Non-myopic multi-aspect sensing with partially observed Markov decision processes. IEEE Transactions on Signal Processing, 2005,06
  • [18] Kreucher C;Hero A;Kastella K. A comparison of task driven and information driven sensor management for target tracking. Spain, 2005
  • [19] Givan R;Leach S;Dean T. Bounded parameter Markov decision processes. 1997
  • [20] Bertsekas D;Tsitsiklis J. Neuro-Dynamic Programming. Belmont,MA:Athena Scientific, 1996
  • [21] Powell W B. Approximate Dynamic Programming:Solving the Curses of Dimensionality. New York:John Wiley and Sons,Inc, 2007
  • [22] Roy B V;Bertsekas D P;Lee Y;Tsitsiklis J N. A neurodynamic programming approach to retailer inventory management. San Diego,California,USA, 1997
  • [23] Beutler F J;Ross K W. Optimal policies for controlled Markov chains with a constraint. Journal of Mathematical Analysis and Applications, 1985,01
  • [24] Thomas L C;White D J;French S;Hartley R. Constrained Markov decision processes as multi-objective problems. London,UK:Academic Press, 1983
  • [25] Mihaylova L;Lefebvre T;Bruyninckx H;Gadeyne K,Schutter J D. A comparison of decision making criteria and optimization methods for active robotic sensing numerical methods and applications. Veldhoven, 2003
  • [26] Chatterjee K. Markov decision processes with multiple longrun average objectives. Springer-verlag, 2007
  • [27] Chatterjee K;Majumdar R;Henzinger T A. Markov decision processes with multiple objectives. Springer-verlag, 2006
  • [28] Karush W;Dear R E. Optimal strategy for item presentation in a learning process. Management Science, 1967,11
  • [29] Zhao Qing;Krishnamachari B;Liu Keqin. On myopic sensing for multi-channel opportunistic access:Structure,optimality,and performance. IEEE Transactions on Wireless Communications, 2008,12
  • [30] Ahmad Sahand Haji All;Liu Mingyan;Javidi Tara;Zhao Qing Krishnamachari Bhaskar. Optimality of myopic sensing in multichannel opportunistic access. IEEE Transactions on Information theory, 2009,09
  • [31] Powell W B;George A;Ayari B B;Simao H P. Approximate dynamic programming for high dimensional resource allocation problems. Montreal,Canada, 2005
  • [32] Chana G K;Asgarpoor S. Optimum maintenance policy with Markov processes. Electric Power Systems Research, 2006,6-7
  • [33] Derman C;Klein M. Some remarks on finite horizon Markovian decision models. Operations Research, 1965,02
  • [34] George A;Powell W B;Kulkarni S R. Value function approximation using multiple aggregation for multiattribute resource management. Journal of Machine Learning Research, 2008
  • [35] Beccoti M;Raiteri D C;Franceschinis G;Haddad S. Non deterministic repairable fault trees for computing optimal repair strategy. Brussels,Belgium, 2008
  • [36] Srivastava Rahul;Koksal Can Emre. Energy optimal transmission scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 2010,05
  • [37] Lin C;Wang Y Z;Wang Y. A stochastic game nets based approach for network security analysis. 陕西西安, 2008
  • [38] 林闯;王元卓;汪洋. 基于随机博弈模型的网络安全评价与分析. 北京:清华大学出版社, 2011
  • [39] Wang Y Z;Lin C;Wang Y;Meng K. Security analysis of enterprise network based on stochastic game nets model. Dresden,Germany, 2009
  • [40] Wang YZ;Yu M;Li J Y;Meng K Iin C Cheng X Q. Stochastic game net and applications in security analysis for enterprise network. International Journal of Information Security, 2012,01
  • [41] Yu M;Wang Y Z;Liu Li;Cheng X Q. Modeling and analysis of email worm propagation based on stochastic game nets. Gwanju,Korea, 2011
  • [42] Simunic Tajana;Benini Luca;Glynnt Peter;De Micheli Giovanni. Dynamic power management for portable systems. New York,USA, 2000
  • [43] Kaelbling L P;Littman M L;Moore A W. Reinforcement learning:A survey. Journal of Artificial Intelligence Research, 1996
  • [44] Beccuti M;Franceschinis G;Haddad S. Markov decision Petti net and Markov decision well-formed net formalisms.[Technical Report,TR-INF-2007-02-01-UNIPMN,]. http://www.di.uniprnn.it/, 2007
  • [45] Beccuti M;Franceschinis G;Haddad S. Markov decision Petri net and Markov decision well-formed net formalisms. 2007
  • [46] Wan J X;Lin C;Chen X;Meng K,Wang Y Z. Performanceanalysis of channel contention in wireless Ad Hoc networks:A stochastic game nets approach. Miami,USA, 2010
  • [47] Choi Kae Won. Adaptive sensing technique to maximize spectrum utilization in cognitive radio. IEEE Transactions on Vehicular Technology, 2010,02
  • [48] Ouyang Wenzhuo;Murugesan Sugumar;Eryilmaz Atilla;Shroff Ness B. Exploiting channel memory for joint estimation and scheduling in downlink networks. 上海, 2011
  • [49] Su Chi-Jiun;Tassiulas Leandros;Tsotras Vassilis J. Broadcast scheduling for information distribution. Japan:Kobe, 1997
  • [50] Beecuti M;Raiteri D C;Franceschinis G;Haddad S. Aframework to design and solve Markov decision well-formed net models. Washington,DC:USA, 2007
  • [51] Beccuti M;Raiteri D C;Franceschinis G. Multiple abstraction levels in performance analysis of WSN monitoring systems. Brussels,Belgium, 2009
  • [52] Beccuti M;Franceschinis G;Raiteri D C;Haddad S. Parametric NdRFT for the derivation of optimal repair strategies. Lisbon,Portugal, 2009
  • [53] Filar J;Vrieze K. Competitive Markov Decision Processes. New York:springer-verlag, 1996
  • [54] Wang Y Z;Lin C;Meng K. Security analysis for online banking system using hierarchical stochastic game nets model. Hilton Hawaiian Village,Honolulu,Hawaii,USA, 2009
  • [55] Wang Y Z;Li J Y;Meng K;Lin C,Cheng X Q. Modeling and security analysis of enterprise network using attackdefense stochastic game net. Security Communication Networks, 2012
  • [56] Wang Y Z;Lin C;Meng K;Lv J J. Analysis of attack actions for E-commerce based on stochastic game nets model. Journal of Computers, 2009,06
  • [57] Chen Huah;Huang Cheng-Wei. Power management modeling and optimal policy for IEEE 802.11 WLAN System. Los Angeles,California,USA, 2004
  • [58] Baarir S;Beccuti M;Cerotti D;Pierro M D Donatelli S Franceschinis G. The GreatSPN tool:Recent enhancements. ACM Performance Evaluation Review, 2009,04
  • [59] Beccuti M;Franceschinis G;Haddad S. MDWNsolver:A framework to design and solve Markov decision Petri nets. International Journal of Performability Engineering, 2011,05
  • [60] Beccuti M. Modeling and analysis of probabilistic systems:Formalisms and efficient algorithms. Dipartimento di Intormatica,Universita degli Studi di Torino, 2009
查看更多︾
相似文献 查看更多>>
3.226.122.74