登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
高效的基于格的环签名方案
  • 摘要

    安全高效的环签名方案有很多重要应用.文中提出了一种新的基于格的环签名方案并在标准模型下给出了正式的安全性证明.在标准的小整数解(SIS)困难假设下,该方案对适应性选择消息攻击是强不可伪造的.与现有的标准模型下基于格的环签名方案相比,新方案签名长度更短,计算效率更高,安全性更强.

  • 作者

    田苗苗  黄刘生  杨威  TIAN Miao-Miao  HUANG Liu-Sheng  YANG Wei 

  • 作者单位

    中国科学技术大学计算机科学与技术学院 合肥 230026/中国科学技术大学苏州研究院 江苏苏州 215123

  • 刊期

    2012年4期 ISTIC EI PKU

  • 关键词

    环签名    标准模型  强不可伪造  高效 

参考文献
  • [1] 王凤和,胡予濮,王春晓. 格上基于盆景树模型的环签名. 电子与信息学报, 2010,10
  • [2] Micciancio D;Regev O. Worst-case to average-case reductions based on Gaussian measures. SIAM Journal on Computing, 2007,1
  • [3] Adam Bender;Jonathan Katz;Ruggero Morselli. Ring Signatures: Stronger Definitions, And Constructions Without Random Oracles. Journal of cryptology: the journal of the International Association for Cryptologic Research, 2009,1
  • [4] Shor PW.. POLYNOMIAL-TIME ALGORITHMS FOR PRIME FACTORIZATION AND DISCRETE LOGARITHMS ON A QUANTUM COMPUTER. SIAM Journal on Computing, 1997,5
  • [5] Rivest R;Shamir A;Tauman Y. How to leak a secret. Beilin:Springer-Verlag, 2001
  • [6] Regev O. Lattice-based cryptography. Beilin:Springer-Verlag, 2006
  • [7] Wang J. Identity-based ring signature from lattice basis delegation[Cryptology ePrint Archive:Report 2010/378]. 2010
  • [8] Gordon D;Katz J;Vaikuntanathan V. A group singnature scheme from lattice assumptions. Berlin:springer-verlag, 2010
  • [9] Rückert M. Lattice-based blind signatures. Beilin:Springer-Verlag, 2010
  • [10] Bresson E;Stern J;Szydlo M. Threshold ring signatures and applications to ad-hoc groups. Beilin:Springer-Verlag, 2002
  • [11] Rückert M. Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without random oracles. Beilin:Springer-Verlag, 2010
  • [12] An J;Dodis Y;Rabin T. On the security of joint signature and encryption. Berlin:springer-verlag, 2002
  • [13] Canetti R;Halevi S;Katz J. Chosen-ciphertext security from identity-based encryption. Beilin:Springer-Verlag, 2004
  • [14] Galindo D;Herranz J;Kiltz E. On the generic construction of identity-based signatures with additional properties. Beilin:Springer-Verlag, 2006
  • [15] Gentry C;Peikert C;Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions. Victoria,British Columbia,Canada, 2008
  • [16] Cash D;Hofheinz D;Kiltz E;Peikert C. Bonsai trees,or how to delegate a lattice basis. Beilin:Springer-Verlag, 2010
  • [17] Boyen X. Lattice mixing and vanishing trapdoors:A framework for fully secure short signatures and more. Beilin:Springer-Verlag, 2010
  • [18] Ajtai M. Generating hard instances of lattice problems. Philadelphia,Pennsylvania,USA, 1996
  • [19] Herranz J;Sáez G. Forking lemmas for ring signature schemes. Beilin:Springer-Verlag, 2003
  • [20] Chow S S M;Yiu S M;Hui L C K. Efficient identity based ring signature. Beilin:Springer-Verlag, 2005
  • [21] Canetti R;Goldreich O;Halevi S. The random oracle methodology,revisited. Journal of the ACM, 2004,04
  • [22] Chow S S M;Wei V K;LiuJ K;Yuen T H. Ring signatures without random oracles. 台湾台北, 2006
  • [23] Shacham H;Waters B. Efficient ring signatures without random oracles. Beilin:Springer-Verlag, 2007
  • [24] Stehlé D;Steinfeld R;Tanaka K;Xagawa K. Efficient public-key encryption based on ideal lattices. Beilin:Springer-Verlag, 2009
  • [25] Dodis Y;Kiayias A;Nicolosi A;Shoup V. Anonymous identification in ad hoc groups. Beilin:Springer-Verlag, 2004
  • [26] Abe M;Ohkubo M;Suzuki K. 1-out-of-n signatures from a variety of keys. Berlin:springer-verlag, 2002
查看更多︾
相似文献 查看更多>>
3.91.157.213