登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
基于正交设计的多目标演化算法
  • 摘要

    提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果--Pareto最优解,在此之前,此问题的Pareto最优解是未知的.

  • 作者

    曾三友  魏巍  康立山  姚书振  ZENG San-you  WEI Wei  Kang Li-shan  YAO Shu-zhen 

  • 作者单位

    株洲工学院计算机科学与技术系,株洲,412008;中国地质大学计算机科学与技术系,武汉,430074/武汉大学软件工程国家重点实验室,武汉,430072/中国地质大学计算机科学与技术系,武汉,430074;武汉大学软件工程国家重点实验室,武汉,430072/中国地质大学计算机科学与技术系,武汉,430074

  • 刊期

    2005年7期 ISTIC EI PKU

  • 关键词

    演化算法  正交设计  多目标优化  Pareto最优集  Pareto最优前沿 

参考文献
  • [1] Cohon J L. Multiobjective Programming and Planning. New York:Academic Press, 1978
  • [2] Srinivas N;Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994,03
  • [3] Deb K;Agrawal S;Pratap A;Meyarivan T. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGAII. Berlin:Springer, 2000
  • [4] Zitzler E;Laumanns M;Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. ETH Zentrum, Zurich, Switzerland:TIK-Report 103, 2001
  • [5] Purshouse R C;Fleming P J. The multi-objective genetic algorithm applied to benchmark problems-An analysis. Department of Automatic Control and Systems Engineering, University of Sheffield. Sheffield, UK:Research Report 796, 2001
  • [6] Hick C.R. Fundamental Concepts in the Design of Experiments. TX:Saunders College Publishing, 1993
  • [7] Zitzler E. Evolutionary algorithms for multiobjective optimization: Methods and applications. Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1999
  • [8] Wu Q. On the optimality of orthogonal experimental design. Acta Mathematicae Applicatae Sinica, 1978,04
  • [9] Leung Y.W;Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001,01
  • [10] Montgomery D.C. Design and Analysis of Experiments. New York:wiley, 1991
  • [11] Ray T;TRai K;Seow K.C. An evolutionary algorithm for multiobjecvtive optimization. ENGINEERING OPTIMIZATION, 2001,03
  • [12] Steuer R E. Multiple Criteria Optimization: Theory, Computation, and Application. New York:wiley, 1986
  • [13] Deb K;Agrawal S;Pratap A;Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGAII. Danpur Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology. Kanpur:Technical Report 200001, 2000
  • [14] Rudolph G. A partial order approach to noisy fitness functions. Seoul Korea, 2001
  • [15] Koski J. Multicriterion optimization in structural design. New York:wiley, 1984
  • [16] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. Vanderbilt University,Nashville, Tennessee, 1984
  • [17] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. Pittsburgh, PA, 1985
  • [18] Hajela P;Lin C Y. Genetic search strategies in multicriterion optimal design. Structural optimization, 1992,04
  • [19] Fonseca C.M;Fleming P.J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. San Mateo, California: Morgan Kaufmann, 1993
  • [20] Horn J;Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm. Illinois Genetic Algorithms Laboratory, University of Illinois. Urbana, Champaign:IlliGAL Report 93005, 1993
  • [21] Horn J;Nafpliotis N;Goldberg D.E. A niched Pareto genetic algorithm for multiobjective optimization. Piscataway, NJ, 1994
查看更多︾
相似文献 查看更多>>
18.206.241.26