登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
多目标优化的演化算法
  • 摘要

    近年来,多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点.多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域.该文在比较与分析多目标优化的演化算法发展的历史基础上,介绍基于Pareto最优概念的多目标演化算法中的一些主要技术与理论结果,并具体以多目标遗传算法为代表,详细介绍了基于偏好的个体排序、适应值赋值以及共享函数与小生境等技术.此外,指出并阐释了值得进一步研究的相关问题.

  • 作者

    谢涛  陈火旺  康立山 

  • 作者单位

    国防科学技术大学计算机学院,长沙,410073/武汉大学软件工程国家重点实验室,武汉,430072

  • 刊期

    2003年8期 ISTIC EI PKU

  • 关键词

    多目标优化  演化计算  Pareto最优 

参考文献
  • [1] Pareto V. Cours D'Economie Politique. ume I and II. F. Rouge
  • [2] Knowles J;Corne D. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization In: Proceedings of the 1999 Congress on Evolutionary Computation. Washington DC, 1999
  • [3] Chen Y L;Liu C C. Multiobjective VAR planning using the goal-attainment method. IEE Proceedings-Generation Transmission and Distribution, 1994,03
  • [4] Coello C A C;Christiansen A D;Aguirre A H. Using a new GA-based multiobjective optimization technique for the design of robot arms. ROBOTICA, 1998
  • [5] Coello C A C;Christiansen A D. Two new GA-based methods for multiobjective optimization. Civil Engineering Systems, 1998,03
  • [6] Coello C A C. An Updated survey of evolutionary multiobjective optimization techniques: State of the art and future trends In: Proceedings of the 1999 Congress on Evolutionary Computation. Washington DC, 1999
  • [7] Fonseca C M;Fleming P J. Multiobjective optimization and multiple constrains handling with evolutionary algorithms- part I: A unified formulation and part II: Application example IEEE Transactions on Systems Man & Cybernetics-Part A. Systems and Humans, 1998,01
  • [8] Deb K;Pratap A;Meyarivan T. Constrained test problems for multi-objective evolutionary optimization. Zurich, Switzerland, 2001
  • [9] Veldhuizen D A V;Lamont G B. Evolutionary computation and convergence to a Pareto front Late Breaking Papers at the Genetic Programming 1998 Conference. Stanford, 1998
  • [10] Rudolph G. On a Multi-objective evolutionary algorithm and its convergence to the Pareto set In:Proceedings of the 1998 IEEE Conference on Evolutionary Computation. Alaska,USA, 1998
  • [11] Chipperfield A J;Fleming P J. Gas turbine engine controller design using multiobjective genetic algorithms. Innovations and Applications,University of Sheffield,UK, 1995
  • [12] Vicini A;Quagliarella D. Inverse and direct airfoil design using a multiobjective genetic algorithm. AIAA Journal, 1997,09
  • [13] Jones B R;Crossley W A;Lyrintzis A S. Aerodynamic and aeroacoustic optimization of airfoils via a parallel genetic algorithm In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, 1998
  • [14] Fujita K;Hirokawa N;Akagi S;Kitamura S,Yokohata H. Multi-objective optimal design of automotive engine using genetic algorithm. Proceedings of DETC'98--ASME Design Engineering Technical Conferences, 1998
  • [15] Cvetkovic D;Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design. Washington DC, 1999
  • [16] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms In:Proceedings of the 1st International Conference on Genetic Algorithms. Laurence Erlbaum Associate, 1985
  • [17] Charnes A;Cooper W W. Management Models and Industrial Applications of Linear Programming Volume 1. New York:John Wiley and Sons,Inc, 1961
  • [18] Ijiri Y. Management Goals and Accounting for Control. Amsterdan:North-Holland, 1965
  • [19] Hajela P;Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992
  • [20] HornJ;Nafpliotis N. Multiobjective optimization using the niched Pareto genetic algorithm University of Illinois at Urbana-Champaign Urbana Illinois USA:. Technical Report, IlliGAL Report 93005, 1993
  • [21] Deb K;Pratap A;Agarwal S;Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002,02
  • [22] Zitzler E;Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study In: Eiben A E Bck T Schoenauer M Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany:Springer, 1998
  • [23] Veldhuizen D A V;Lamont G B. Multiobjective evolutionary algorithm research: A history and analysis Department of Electrical and Computer Engineering Graduate School of Engineering Air Force Institute of Technology Wright Patterson AFB OH USA. Technical Report TR-98-03, 1998
  • [24] Fonseca C M;Fleming P J. Genetic algorithms for multiobjective optimization: formulation discussion and generation In: Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, California, 1993
  • [25] Srinivas N;Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994,03
  • [26] MICHIELSSEN E;Daniel S W. Design of lightweight broad band microwave absorbers using genetic algorithms. IEEE Transactions on Microwave theory and Techniques, 1993,41
  • [27] Rosenberg R S. Simulation of genetic populations with biochemical properties. University of Michigan,Ann Harbor, 1967
  • [28] Wolpert D H;William G M. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997,01
  • [29] Whitley D. Evaluating evolutionary algorithms. Artificial Intelligence, 1996
查看更多︾
相似文献 查看更多>>
3.209.80.87