登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
人运动的视觉分析综述
  • 摘要

    目前,人运动的视觉分析是计算机视觉领域中最活跃的研究主题之一,其核心是利用计算机视觉技术从图像序列中检测、跟踪、识别人并对其行为进行理解与描述,它在虚拟现实、视觉监控、感知接口等领域均有着广阔的应用前景.人运动的视觉分析系统一般遵从下述的处理过程:(1)运动检测,(2)运动目标分类,(3)人的跟踪,(4)行为理解与描述.该文将重点从此四个方面回顾人运动分析的发展水平和常用的处理方法,并对研究难点及未来的发展趋势作了较为详细的分析.

  • 作者

    王亮  胡卫明  谭铁牛 

  • 作者单位

    中国科学院自动化研究所模式识别国家重点实验室,北京,100080

  • 刊期

    2002年3期 ISTIC EI PKU

  • 关键词

    人的运动  视觉分析  运动检测  跟踪  行为理解 

参考文献
  • [1] Remagnino P;Tan T;Baker K. Agent orientated annotation in model based visual surveillance. Bombay, India, 1998
  • [2] Herzog G;Rohr K. Integrating vision and language: Towards automatic description of human movements. Bielefeld, 1995
  • [3] Gavrila D. The visual analysis of human movement: A survey. Computer Vision and Image Understanding, 1999,01
  • [4] MAYBANK S;Tan T. Introduction--special section on visual surveillance. International Journal of Computer Vision, 2000,02
  • [5] Kojima. Generating natural language description of human behaviors from video images. Barcelona, 2000
  • [6] Onoguchi K. Shadow elimination method for moving object detection. Brisbane, Australia, 1998
  • [7] Kakadiaris I;Metaxas D. Three-dimensional human body model acquisition from multiple views. International Journal of Computer Vision, 1998,03
  • [8] Sharma R;Pavlovic V;Huang T. Toward multimodel human-computer interface. Proc IEEE Special Issue on Multimedia Signal Processing, 1998,05
  • [9] Steffens J;Elagin E;Neven H. Person spotter-fast and robust system for human detection, tracking and recognition. Nara, Japan, 1998
  • [10] Yang J;Waibel A. A real-time face tracker. Sarasota, USA, 1996
  • [11] Moghaddam B;Wahid W;Pentland A. Beyond eigenfaces: Probabilistic matching for face recognition. Nara, Japan, 1998
  • [12] Little J;Boyd J. Recognizing people by their gait: The shape of motion. Journal of Computer Vision Research, 1998,02
  • [13] Shutler J D;Nixon M;Harris C. Statistical gait description via velocity moments. Austin, Texas, 2000
  • [14] Huang P;Harris C;Nixon M. Human gait recognition in canonical space using temporal templates. Image and Signal Processing, 1999
  • [15] BOGHOSSIAN B;Velastin S. Image processing system for pedestrian monitoring using neural classification of normal motion patterns. Measurement and Control, 1999,09
  • [16] Boghossian B;Velastin S. Motion-based machine vision techniques for the management of large crowds. Circuits and Systems, Pafos, Cyprus, 1999
  • [17] Li Y;Ma S;Lu H. Human posture recognition using multi-scale morphological method and Kalman motion estimation. Brisbane, Australia, 1998
  • [18] Collins R. A system for video surveillance and monitoring: VSAM final report. Carnegie Mellon University:Technical Report CMU-RI-TR-00-12, 2000
  • [19] Segen J;Kumar S. Shadow gestures: 3D hand pose estimation using a single camera. Fort Collins, Colorado, 1999
  • [20] Yang M-H;Ahuja N. Recognizing hand gesture using motion trajectories. Fort Collins, Colorado, 1999
  • [21] Selinger A;Wixson L. Classifying moving objects as rigid or non-rigid without correspondences. Monterey, CA, 1998
  • [22] Kuno Y;Watanabe T;Shimosakoda Y;Nakagawa S. Automated detection of human for visual surveillance system. Vienna, 1996
  • [23] CUTLER R;Davis L. Robust real-time periodic motion detection, analysis, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,08
  • [24] Lipton A. Local application of optic flow to analyse rigid versus non-rigid motion. http://www.eecs.lehigh.edu/FRAME/Lipton/iccvframe.html
  • [25] Stauffer C. Automatic hierachical classification using time-base co-occurrences. 1999
  • [26] Haritaoglu I;Harwood D;Davis L. W4:who? when? where? what? A real time system for detecting and tracking people. Nara, Japan, 1998
  • [27] Maggioni C;Kammerer B. Gesture Computer: History, Design, and Applications. Computer Vision for Human-Machine Interaction. Cambridge:Cambridge University Press, 1998
  • [28] Cham T-J;Rehg J. A multiple hypothesis approach to figure tracking. Fort Collins, Colorado, 1999
  • [29] Ricquebourg Y;Bouthemy P. Real-time tracking of moving persons by exploiting spatio-temporal image slices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,08
  • [30] Darrell T;Gordon G;Harville M;Woodfill J. Integrated person tracking using stereo, color, and pattern detection. International Journal of Computer Vision, 2000,02
  • [31] Welch G;Bishop G. An introduction to the Kalman filter. http://www.cs.unc.edu, 2000
  • [32] ISARD M;Blake A. Condensation--conditional density propagation for visual tracking. International Journal of Computer Vision, 1998,01
  • [33] Pavlovi c′ V;Rehg J;Cham T-J;Murphy K. A dynamic Bayesian network approach to figure tracking using learned dynamic models. Corfu, Greece, 1999
  • [34] Karaulova I;Hall P;Marshall A. A hierarchical model of dynamics for tracking people with a single video camera. Bristol, UK, 2000
  • [35] Chang T;Gong S;Ong E. Tracking multiple people under occlusion using multiple cameras. Bristol, UK, 2000
  • [36] Kakadiaris I;Metaxas D. Model-based estimation of 3-D human motion with occlusion based on active multi-viewpoint selection. San Francisco, 1996
  • [37] Utsumi A;Mori H;Ohya J;Yachida M. Multiple-view-based tracking of multiple humans. Brisbane, Australia, 1998
  • [38] Isard M;Blake A. Contour tracking by stochastic propagation of conditional density. Cambridge, 1996
  • [39] Pentland A. Looking at people: Sensing for ubiquitous and wearable computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,01
  • [40] Baumberg A;Hogg D. An efficient method for contour tracking using active shape models. Austin, 1994
  • [41] Ju S;Black M;Yaccob Y. Cardboard people: A parameterized model of articulated image motion. Killington, Vermont USA, 1996
  • [42] Rohr K. Towards model-based recognition of human movements in image sequences. CVGIP:Image Understanding, 1994,01
  • [43] Polana R;Nelson R. Low level recognition of human motion. Austin, TX, 1994
  • [44] Aggarwal J;Cai Q;Liao W;Sabata B. Non-Rigid motion analysis: Articulated·elastic motion. Computer Vision and Image Understanding, 1998,02
  • [45] Myers C;Rabinier L;Rosenberg A. Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Transactions on Acoustics Speech and Signal Processing, 1980,06
  • [46] Bobick A;Wilson A. A state-based technique for the summarization and recognition of gesture. Cambridge, 1995
  • [47] Takahashi K;Seki S. Recognition of dexterous manipulations from time varying images. Austin, 1994
  • [48] Poritz A. Hidden Markov models:A guided tour. New York City, NY, 1988
  • [49] Wachter S;Nagel H-H. Tracking persons in monocular image sequences. Computer Vision and Image Understanding, 1999,03
  • [50] Rossi M;Bozzoli A. Tracking and counting people. Austin, 1994
  • [51] Niyogi S;Adelson E. Analyzing and recognizing walking figures in XYT. Seattle, USA, 1994
  • [52] Rabinier L. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989,02
  • [53] Brand M;Oliver N;Pentland A. Coupled hidden Markov models for complex action recognition. Puerto Rico, 1997
  • [54] Guo Y;Xu G;Tsuji S. Understanding human motion patterns. Jerusalem, Israel, 1994
  • [55] Rosenblum M;Yacoob Y;Davis L. Human emotion recognition from motion using a radial basis function network architecture. Austin, 1994
  • [56] Bobick A;Davis J. Real-time recognition of activity using temporal templates. Sarasota, Florida, 1996
  • [57] Davis J;Bobick A. The representation and recognition of action using temporal templates. MIT Media Lab,Perceptual Computing Group:Technical Report 402, 1997
  • [58] Bregler C. Learning and recognizing human dynamics in video sequences. Puerto Rico, 1997
  • [59] Collins R;Lipton A;Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,08
  • [60] Starner T;Pentland A. Real-time American sign language recognition from video using hidden Markov models. Coral Gables, Florida, 1995
  • [61] Yamato J;Ohya J;Ishii K. Recognizing human action in time-sequential images using hidden Markov model. Champaign, Illinois, 1992
  • [62] Cui Y;Weng J. Hand segmentation using learning-based prediction and verification for hand sign recognition. Puerto Rico, 1997
  • [63] Turk M. Visual interaction with lifelike characters. Killington, Vermont USA, 1996
  • [64] McKenna S. Tracking groups of people. Computer Vision and Image Understanding, 2000,01
  • [65] Lakany H;Haycs G;Hazlewood M;Hillman S. Human walking: Tracking and analysis. Savoy Place, London, 1999
  • [66] K ohle M;Merkl D;Kastner J. Clinical gait analysis by neural networks: Issues and experiences. Maribor, Slovenia, 1997
  • [67] Meyer D;Denzler J;Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. Santa Barbara, California, 1997
  • [68] Stauffer C;Grimson W. Adaptive background mixture models for real-time tracking. Fort Collins, Colorado, 1999
  • [69] WREN C;Azarbayejani A;Darrell T;Pentland A. Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,07
  • [70] Arseneau S;Cooperstock J. Real-time image segmentation for action recognition. Victoria, Canada, 1999
  • [71] Sun H;Feng T;Tan T. Robust extraction of moving objects from image sequences. 台湾, 2000
  • [72] Lipton A;Fujiyoshi H;Patil R. Moving target classification and tracking from real-time video. Princeton, NJ, 1998
  • [73] Anderson C;Bert P;Vander Wal G. Change detection and tracking using pyramids transformation techniques. Cambridge, MA, 1985
  • [74] Barron J;Fleet D;Beauchemin S. Performance of optical flow techniques. International Journal of Computer Vision, 1994,01
  • [75] Verri A;Uras S;DeMicheli E. Motion segmentation from optical flow. Brighton, UK, 1989
  • [76] Friedman N;Russell S. Image segmentation in video sequences: A probabilistic approach. Rhode Island, USA, 1997
  • [77] McLachlan G;Krishnan T. The EM Algorithm and Extensions. Wiley Interscience, 1997
  • [78] Remagnino P;Tan T;Baker K. Multi-agent visual surveillance of dynamic scenes. IMAGE AND VISION COMPUTING, 1998,08
  • [79] Stringa E. Morphological change detection algorithms for surveillance applications. Bristol, UK, 2000
  • [80] Karmann K;Brandt A. Moving object recognition using an adaptive background memory. Elsevier,Amsterdam,The Netherlands, 1990
  • [81] Kilger M. A shadow handler in a video-based real-time traffic monitoring system. Palm Springs, CA, 1992
  • [82] Haritaoglu I;Harwood D;Davis L. W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,08
  • [83] Goncalves L;Bernardo E;Ursella E;Perona P. Monocular tracking of the human arm in 3D. Cambridge, 1995
  • [84] Rehg J;Kanade T. Visual tracking of high DOF articulated structures: An application to human hand tracking. Stockholm, Sweden, 1994
  • [85] Meyer D. Gait classification with HMMs for trajectories of body parts extracted by mixture densities. Southampton, England, 1998
  • [86] Fieguth P;Terzopoulos D. Color-based tracking of heads and other mobile objects at video frame rate. Puerto Rico, 1997
  • [87] Jang D-S;Choi H-I. Active models for tracking moving objects. Pattern Recognition, 2000,07
  • [88] Azarbayejani A;Pentland A. Real-time self-calibrating stereo person tracking using 3D shape estimation from blob features. Vienna, 1996
  • [89] Cai Q;Mitiche A;Aggarwal J. Tracking human motions in an indoor environment. Washington, DC, USA, 1995
  • [90] Segen J;Pingali S. A camera-based system for tracking people in real time. Vienna, 1996
  • [91] Rehg J;Kanade T. Model-based tracking of self-occluding articulated objects. Cambridge, 1995
  • [92] Chang I-C;Huang C-L. Ribbon-based motion analysis of human body movements. Vienna, 1996
  • [93] Freeman W;Weissman C. Television control by hand gestures. Zurich, Switzerland, 1995
  • [94] Aggarwal J;Cai Q. Human motion analysis: A review. Computer Vision and Image Understanding, 1999,03
  • [95] Cai Q;Aggarwal J. Tracking human motion using multiple cameras. Vienna, 1996
  • [96] Gavrila D;Davis L. 3-D model-based tracking of humans in action:A multi-view approach. San Francisco, 1996
  • [97] Zhong Y;Jain A;Dubuisson-Jolly M. Object tracking using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,05
  • [98] Paragios N;Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,03
  • [99] Bertalmio M;Sapiroo G;Randll G. Morphing active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,07
  • [100] PETERFREUND N. Robust tracking of position and velocity with Kalman snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,06
  • [101] Campbell L;Bobick A. Recognition of human body motion using phase space constraints. Cambridge, 1995
  • [102] Intille S;Bobick A. Representation and visual recognition of complex, multi-agent actions using belief networks. Perceptual Computing Section,MIT Media Lab:Technical Report 454, 1998
  • [103] Boult T. Frame-rate multi-body tracking for surveillance. Monterey, California, 1998
  • [104] Goddard N. Incremental model-based discrimination of articulated movement from motion features. Austin, 1994
  • [105] Fujiyoshi H;Lipton A. Real-time human motion analysis by image skeletonization. Princeton, NJ, 1998
查看更多︾
相似文献 查看更多>>
3.85.10.62