登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
混沌时间序列分析中的相空间重构技术综述
参考文献
  • [1] 蒋传文,侯志俭,李承军. 求取混沌时间序列嵌入维数的一种神经元网络方法. 水电能源科学, 2000,4
  • [2] 刘东林,帅典勋. 网络流量模型的非线性特征量的提取及分析. 电子学报, 2003,12
  • [3] 丁晶,王文圣,赵永龙. 以互信息为基础的广义相关系数. 四川大学学报(工程科学版), 2002,3
  • [4] 秦卫阳,孟光. 采用小波方法计算关联维数. 机械科学与技术, 2000,6
  • [5] 陈哲,冯天瑾,张海燕. 基于小波神经网络的混沌时间序列分析与相空间重构. 计算机研究与发展, 2001,5
  • [6] 王泽,朱贻盛,李音. 独立分量分析在混沌信号分析中的应用. 电子学报, 2002,10
  • [7] 曾昭才,段虞荣,段绍光. 基于径向基函数网络的混沌时间序列分析. 重庆大学学报(自然科学版), 1999,6
  • [8] 谢勇,徐健学,杨红军,胡三觉. 皮层脑电时间序列的相空间重构及非线性特征量的提取. 物理学报, 2002,2
  • [9] 郁俊莉,王其文,韩文秀. 经济时间序列相空间重构与混沌特性判定研究. 武汉大学学报(理学版), 2004,1
  • [10] 张锦钢,李辉,徐佩霞. 网络流量的混沌特性研究. 应用科学学报, 2002,4
  • [11] 樊重俊,王浣尘. 度量两个序列非线性相关性的一种方法. 信息与控制, 1998,3
  • [12] 王兴元,顾树生. 心电动态生理及病理信息的非线性动力学研究. 中国生物医学工程学报, 2000,4
  • [13] 赵鸿,柴路,王浩,刘书声. 互信息在时间序列分析中的应用. 应用科学学报, 1996,1
  • [14] 洪时中. 非线性时间序列分析的最新进展及其在地球科学中的应用前景. 地球科学进展, 1999,6
  • [15] 陈阳. 新的独立性度量及其在混沌信号分析中的应用. 东南大学学报(自然科学版), 2003,1
  • [16] Hsieh D A. Chaos and Nonlinear Dynamics: Application to Financial Markets. http://www. chaos. gb. net/, 1990
  • [17] Kanz H;Schreiber T. Nonlinear Time Series Analysis. Cambridge :Cambridge University Press, 1997
  • [18] Bradley E;M. Berthold;D. Hand. Time-Series Analysis in Intelligent Data Analysis: An Introduction. Springer-Verlag, 1999
  • [19] Stark J;Street G. Nonlinear Dynamics Ⅱ , Ⅲ: Analysis of Time Series in Modeling Uncertainty. University of Cambridge Programme for Industry, 1994
  • [20] Akay M. Nonlinear Biomedical Signal Processing. Dynamic Analysis and Modeling. Wiley-IEEE Press, 2000
  • [21] Takens F. Dynamical systems and turbulence. Berlin:Springer, 1981
  • [22] Grassberger P;Procacia I. Measuring the strangeness of strange attractors. Physica D-Nonlinear Phenomena, 1983
  • [23] Packard N H;Crutchfield J P;Farmer J D. Geometry from a Time Series. Physical Review Letters, 1980,09
  • [24] Sauer T;Yorke;Casdagli M. Embedology. Journal of Statistical Physics, 1991
  • [25] Gibson J F;Farmer J;Casdagli M. An analytic approach to practical state space reconstruction. Physica D-Nonlinear Phenomena, 1992
  • [26] Agnon Yehuda;Golan Amos;Shearer Matthew. Nonparametric, nonlinear, short-term forecasting: theory and evidence for nonlinearities in the commodity markets. Economics Letters, 1999
  • [27] Widman G;Lehnertz K;Jansen P. A fast general purpose algorithm for the computation of auto-and cross-correlation integrals from single channel data. Physica D-Nonlinear Phenomena, 1998
  • [28] 赵贵兵;石炎福;段文锋. 从混沌时间序列同时计算关联维和Kolmogorov熵. 计算物理, 1999
  • [29] Albano A M;Muench J;Schwartz C. Singular-value decomposition and the Grassberger-Procaccia algorithm. Physical Review A, 1988
  • [30] Kennel;Mathew B;Brown R;Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992
  • [31] Abarbanel H D I;Brown R;Sidorowich J J. The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 1993,04
  • [32] Vaidya P G;Angadi S. Decoding chaotic cryptography without access to the superkey. Chaos, Solitons & Fractals, 2003
  • [33] Cao Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D-Nonlinear Phenomena, 1997
  • [34] Broomhead D;King G. Extracting qualitative dynamics from experimental data. Physica D-Nonlinear Phenomena, 1986
  • [35] Palus M;Dvorak I. Singular-value decomposition in attractor reconstruction: Pitfalls and precautions. Physica D-Nonlinear Phenomena, 1992
  • [36] Lei Min;Wang Zhizhong;Feng Zhengjin. A Method of Embedding dimension estimation based on symplectic geometry. Physics Letters A, 1994
  • [37] Chiang T C. Time Series Dynamics of Short-Time Interest :Evidence from Eurocurrency markets. Journal of International Financial Markets,Institutions & Money, 1997,07
  • [38] Fernanda Strozzi. Application of Nonlinear Time Series analysis Technology to High Frequency Currency Exchange Data. PHYSICA A, 2002,3-4
  • [39] 郑会永;刘华强;戴冠中. 时间序列分维的改进GP算法. 西北工业大学学报, 1998,01
  • [40] Rosenstein M T;Collins J J;De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D-Nonlinear Phenomena, 1993
  • [41] Jeong Jaeseung;Kim Dai-Jin;Chae Jeong-Ho. Nonlinear analysis of the EEG of schizophrenics with optimal embedding dimension. Medical Engineering and Physics, 1998
  • [42] Buzug T;Pfister G. Comparison of algorithms calculating optimal parameters for delay time coordinates. Physica D-Nonlinear Phenomena, 1992
  • [43] Liebert W;Pawelzik K;Schuster H G. Optimal embeddings of chotic attrctors from topological considerations. Europhysics Letters, 1991
  • [44] Kim H S;Eykholt R;Salas J D. Nonlinear dynamics, delay times,and embedding windows. Physica D-Nonlinear Phenomena, 1999
  • [45] Prichard D;Theiler J. Generalized Redundancies for time series analysis. Physica D-Nonlinear Phenomena, 1995
  • [46] Rosenstein M T;Collins J J;De Luca Carlo J. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D-Nonlinear Phenomena, 1994
  • [47] Buzug T;Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global and local dynamical behavior of strange attractors. Physical Review A, 1992
  • [48] Kugiumtzis D. State space reconstruction parameter in the analysis of chotix time series-the role of the time window length. Physica D-Nonlinear Phenomena, 1996
  • [49] Kugiumtzis D;Christophersen N. State space reconstruction: Method of delays vs singular spectrum approach: [Research report 236]. Department of informatics, University of Oslo, 1997
  • [50] Kugiumtzis D;Lillekjendlie B;Christophersen N. Chaotic times series: Part Ⅰ: Estimation of some invariant properties in state space. Modeling,Identification and Control, 1994,04
  • [51] Martinerie J M;Albano A M;Mees AI. Mutual information,strange attractors, and the optimal estimation of dimension. Physical Review A, 1992
  • [52] Fraser A M;Swinney H l. Independent coordinates for strange attractors from mutual information. Physical Review A, 1986
  • [53] 杨志安;王光瑞;陈式刚. 用等间距分格子法计算互信思函数确定延迟时间. 计算物理, 1995,04
  • [54] Darbellay G A;Wuertz D. The entropy as a tool for analyzing statis tical dependences in financial time series. Physica A, 2000
  • [55] Katayama R;Kaihei;Kuwata;Kajitani Yuji,. Embedding dimension estimation of chaotic time series using self-generating radial basis function network. Fuzzy Sets and Systems, 1995
  • [56] Jones A J;Margetts S;Durrant P. Nonlinear modeling and chaotic neural networks. SBRN, 2000
  • [57] 林振山. 非线性科学及其在地学中的应用. 北京:气象出版社, 2003
  • [58] Jeong J;Gore J C;Peterson B S. Mutual information analysis of the EEG in patients with Alzheimer's disease. Clinical Neurophysiology, 2001
  • [59] Romashchenko A. Extracting the Mutual Information for a Triple of Binary Strings. 2003
  • [60] Tanaka N;Okamoto H;Naito M. Detecting and evaluating intrinsic nonlinearity present in the mutual dependence between two variables. Physica D-Nonlinear Phenomena, 2000
  • [61] 何岱海;徐健学;陈永红. 非线性动力学相空间重构中小波变换方法研究. 振动工程学报, 1999,01
  • [62] Diks Cees;Mudelsee Manfred. Redundancies in the Earth's climatological time Series. Physics Letters A, 2000,5-6
  • [63] Cao Liangyue;Soofi A S. Nonlinear deterministic forecasting of daily dollar exchange rates. International JOURNAL OF FORECASTING, 1999
查看更多︾
相似文献 查看更多>>
54.196.208.187