登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
水平运动的三自由度欠驱动机器人的位置控制
  • 摘要

    以水平运动的三自由度欠驱动机器人为研究对象,对其位置控制问题进行研究.基于分层控制思想提出一种模糊控制系统,将欠驱动机器人末端位置控制问题进行分解,末端位置由主动关节的旋转与被动关节的伸展或收缩组成.第1关节按照规划的曲线运动,第2关节和第3关节通过动力学耦合作用运动到期望位置.主动关节2的控制力矩或控制电压通过对模糊逻辑控制器的输出量进行加权求和得到.采用该控制原理,通过数值仿真和实验实现了3R欠驱动机器人在操作空间中末端点到点的位置控制.

  • 作者

    任志全  余跃庆  周军  REN Zhiquan  YU Yueqing  ZHOU Jun 

  • 作者单位

    北京工业大学机械工程与应用电子技术学院,北京,100124

  • 刊期

    2010年6期 ISTIC EI PKU

  • 关键词

    欠驱动机器人  位置控制  模糊理论  摩擦  动力学耦合 

参考文献
  • [1] 栾楠,明爱国,赵锡芳,陈建平. 欠驱动机器人的最优轨道生成与实现. 上海交通大学学报, 2002,10
  • [2] 刘庆波,YU Yue-qing. 基于遗传算法的欠驱动机器人模糊控制器设计. 系统仿真学报, 2008,8
  • [3] Arun D. Mahindrakar;Shodhan Rao;R. N. Banavar. Point-to-point control of a 2R planar horizontal underactuated manipulator. Mechanism and Machine Theory: Dynamics of Machine Systems Gears and Power Trandmissions Robots and Manipulator Systems Computer-Aided Design Methods, 2006,7
  • [4] H. Arai;K. Tanie;N. Shiroma. Nonholonomic control of a three-DOF planar underactuated manipulator. IEEE Transactions on Robotics and Automation, 1998,5
  • [5] De Luca A;Oriolo G. Motion planning and trajectory control of an underactuated three-link robot via dynamic feedback linearization. Piscataway,NJ,USA:IEEE, 2000
  • [6] De Luca A;Oriolo G. Motion planning under gravity for underactuated three-link robots. Piscataway,NJ,USA:IEEE, 2000
  • [7] Liu Q B;Yu Y Q;Su L Y. A new method for position control of planar 3-DOF underactuated robots. Piscataway,NJ,USA:IEEE, 2008
  • [8] Manindrakar A D;Banavar R N;Reyhanoglu M. Controllability and point-to-point control of 3-DOF planar horizontal underactuated manipulators. International Journal of Control, 2005,01
  • [9] Oriolo G;Nakamura Y. Control of mechanical systems with second-order nonholonomic constraints:Underactuated manipulators. Piscataway,NJ,USA:IEEE, 1991
  • [10] Yoshikawa T;Kobayashi K;Watanabe T. Design of a desirable trajectory and convergent control for 3-D.O.F manipulator with a nonholonomic constraint. Piscataway,N J,USA:IEEE, 2000
  • [11] Martínez S;Cortés J;Bullo F. Motion planning and control problems for underaetuated robots. Berlin:Springer-Verlag, 2003
  • [12] De Luca A;Iannitti S. A simple STLC test for mechanical systems underactuated by one control. Piscataway,NJ,USA:IEEE, 2002
  • [13] Bullo F. Nonlinear control of mechanical systems:A Riemannian geometry approach. California,USA:California Institute of Technology, 1998
  • [14] Brockett R W. Asymptotic stability and feedback stabilization,differential geometric control theory. New York,USA:Birkaeuser, 1983
查看更多︾
相似文献 查看更多>>
3.227.249.234