登录 | 注册 | 充值 | 退出 | 公司首页 | 繁体中文 | 满意度调查
综合馆
基于树轮资料重建森林净初级生产力的研究进展
  • 摘要

    森林净初级生产力(NPP)反映了森林植被固定和转换光合产物的能力,表示了森林碳汇功能强度,也是评价森林植被的演替状况以及陆地生态系统承载力的主要指标.基于遥感、清查资料等方法估算NPP已经取得了一些进展,但传统的研究方法受限于观测(调查)年份,难以有效获取长时间尺度的区域森林种群或群落年际NPP.树轮资料较为有效地反映了历史时期森林植被的逐年生长状况,从而在估算高精度且长时间尺度区域森林种群及群落NPP中具有较大的优势.本文对利用树轮资料重建区域森林NPP的两种主要方法进行了总结,第一种方法主要是依据树轮资料提供的立木逐年生长量进行生物量以及NPP的估算;第二种方法则是利用树轮指数与其他植被指数的相关性间接反演过去时间段区域森林群落NPP的变化.上述两种估算NPP的方法均存在较多的限制性,未来利用树轮资料估算NPP的时空精度仍有待提高.

  • 作者

    方欧娅  汪洋  邵雪梅  FANG Ouya  WANG Yang  SHAO Xuemei 

  • 作者单位

    中国科学院地理科学与资源研究所,北京100101;中国科学院大学,北京100049/中国科学院地理科学与资源研究所,北京,100101

  • 刊期

    2014年8期 ISTIC PKU

  • 关键词

    树轮  净初级生产力  生物量  植被指数  tree ring  NPP  biomass  vegetation index 

参考文献
  • [1] 程瑞梅,封晓辉,肖文发,王瑞丽,王晓荣,杜化堂. 北亚热带马尾松净生产力对气候变化的响应. 生态学报, 2011,8
  • [2] 穆少杰,李建龙,周伟,杨红飞,章超斌,居为民. 2001-2010年内蒙古植被净初级生产力的时空格局及其与气候的关系. 生态学报, 2013,12
  • [3] 王瑞丽,程瑞梅,肖文发,封晓辉,刘泽彬,王晓荣. 北亚热带马尾松年轮宽度与NDVI的关系. 生态学报, 2011,19
  • [4] 王斌,刘某承,张彪. 基于森林资源清查资料的森林植被净生产量及其动态变化研究. 林业资源管理, 2009,1
  • [5] 於琍,朴世龙. IPCC第五次评估报告对碳循环及其他生物地球化学循环的最新认识. 气候变化研究进展, 2014,1
  • [6] 彭俊杰,何兴元,陈振举,崔明星,张先亮,周长虹. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应--基于BIOME-BGC模型和树木年轮的模拟. 应用生态学报, 2012,7
  • [7] 张远东,刘彦春,刘世荣,张笑鹤. 基于年轮分析的不同恢复途径下森林乔木层生物量和蓄积量的动态变化. 植物生态学报, 2012,2
  • [8] 王文志,刘晓宏,陈拓,安文玲,徐国保. 基于祁连山树轮宽度指数的区域NDVI重建. 植物生态学报, 2010,9
  • [9] 何吉成,王丽丽,邵雪梅. 漠河樟子松树轮指数与标准化植被指数的关系研究. 第四纪研究, 2005,2
  • [10] 吴祥定,邵雪梅. 采用树轮宽度资料分析气候变化对树木生长量影响的尝试. 地理学报, 1996,z1
  • [11] 高卫东,袁玉江,张瑞波. 基于树木年轮的呼图壁河流域草地归一化植被指数重建. 东北林业大学学报, 2012,4
  • [12] Aber J S;Nang K N;Wilkins N. Remote sensing of forest growth and response to climatic variations in Northeastern Kansas,USA. Romssa Suohkan,Norway, 1998
  • [13] Andreu-Hayles L;D'Arrigo R;Anchukaitis K J. Varying boreal forest response to Arctic environmental change at the Firth River,Alaska. Environmental Research Letters, 2011,04
  • [14] Beck P S A;Andreu-Hayles L;D'Arrigo R. A largescale coherent signal of canopy status in maximum latewood density of tree rings at arctic treeline in North America. Global and Planetary Change, 2013
  • [15] Gholz H L;Grier C C;Campbell A G. Equations for estimating biomass and leaf area of plants in the Pacific northwest. Corvallis,OR:Oregon State University, 1979
  • [16] Bemer L T;Beck P S A;Bunn A G. High-latitude tree growth and satellite vegetation indices:correlations and trends in Russia and Canada (1982-2008). JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011
  • [17] Esper J;Frank D;Buntgen U. Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology, 2010,01
  • [18] Forbes B C;FAURIA M;Zetterberg P. Russian Arctic warming and 'greening' are closely tracked by tundra shrub willows. Global Change Biology, 2010,05
  • [19] Graumlich L J;Brubaker L B;Grier C C. Long-term trends in forest net primary productivity:Cascade Mountains,Washington. ECOLOGY, 1989,02
  • [20] 方精云;刘国华;徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报, 1996,05
  • [21] Chen Z J;Li J B;Fang K Y. Seasonal dynamics of vegetation over the past 100 years inferred from tree rings and climate in Hulunbei'er steppe,Northern China. Journal of Arid Environments, 2012
  • [22] Ciais P;Sabine C;Bala G. Carbon and other biogeochemical cycles. Cambridge & New York:Cambridge University Press, 2013
  • [23] Cook E R. A time series analysis approach to tree ring standardization (dendrochronology,foresty,dendroclimatology,autoregressive process). Tucson,AZ:The University of Arizona, 1985
  • [24] Hasenauer H;Nemani R R;Schadauer K. Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecology and Management, 1999,03
  • [25] Bouriaud O;Breda N;Dupouey J L. Is ring width a reliable proxy for stem-biomass increment:a case study in European beech. Canadian Journal of Forest Research, 2005,12
  • [26] Chen J M;Mo G;Pisek J. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global Biogeochemical Cycles, 2012,01
  • [27] Cramer W;Bondeau A;Woodward F I. Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models. Global Change Biology, 2001,04
  • [28] Haxeltine A;Prentice I C. BIOME3:an equilibrium terrestrial biosphere model based on ecophysiological constraints,resource availability,and competition among plant functional types. Global Biogeochemical Cycles, 1996,04
  • [29] Naesset E;Gobakken T. Estimation of above-and belowground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 2008,06
  • [30] Nemani R R;Keeling C D;Hashimoto H. Climatedriven increases in global terrestrial net primary production from 1982 to 1999. SCIENCE, 2003,5625
  • [31] Nogueira E M;Fearnside P M;Nelson B W. Estimates of forest biomass in the Brazilian Amazon:new allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 2008,11
  • [32] Pettorelli N;Vik J O;Mysterud A. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 2005,09
  • [33] D'Arrigo R D;Jacoby G C;Fung I Y. Boreal forests and atmosphere-biosphere exchange of carbon dioxide. Narure, 1987
  • [34] D'Arrigo R D;Malmstrom C M;Jacoby G C. Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. International Journal of Remote Sensing, 2000,11
  • [35] Dobbertin M;Eilmann B;Bleuler P. Effect of irrigation on needle morphology,shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 2010,03
  • [36] Picchio R;Neri F;Maesano M. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret)stand in central Italy. Forest Ecology and Management, 2011,02
  • [37] Rathgeber C;Nicault A;Kaplan J O. Using a biogeochemistry model in simulating forests productivity responses to climatic change and CO2 increase:example of Pinus halepensis in Provence (south-east France). Ecological Modelling, 2003,03
  • [38] Rickebusch S;Lischke H;Bugmann H. Understanding the low-temperature limitations to forest growth through calibration of a forest dynamics model with treering data. Forest Ecology and Management, 2007,2-3
  • [39] Rossi S;Tremblay M J;Morin H. Growth and productivity of black spruce in even-and uneven-aged stands at the limit of the closed boreal forest. Forest Ecology and Management, 2009,09
  • [40] Sitch S;Huntingford C;Gedney N. Evaluation of the terrestrial carbon cycle,future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 2008,09
  • [41] Steffen W;Noble I;Canadell J. The terrestrial carbon cycle:implications for the Kyoto Protocol. SCIENCE, 1998,5368
  • [42] Stinson G;Kurz W A;Smyth C E. An inventorybased analysis of Canada's managed forest carbon dynamics,1990 to 2008. Global Change Biology, 2011,06
  • [43] Su H;Sang W;Wang Y. Simulating Picea schrenkiana forest productivity under climatic changes and atmospheric CO2 increase in Tianshan Mountains,Xinjiang Autonomous Region,China. Forest Ecology and Management, 2007,2-3
  • [44] Williams C J;Johnson A H;LePage B A. Reconstruction of tertiary Metasequoia forests.Ⅱ.Structure,biomass,and productivity of Eocene floodplain forests in the Canadian Arctic. PALEOBIOLOGY, 2003,02
  • [45] Wu Z T;Dijkstra P;Koch G W. Responses of terrestrial ecosystems to temperature and precipitation change:a meta-analysis of experimental manipulation. Global Change Biology, 2011,02
  • [46] Prince S D;Becker-Reshef I;Rishmawi K. Detection and mapping of long-term land degradation using local net production scaling:application to Zimbabwe. Remote Sensing of Environment, 2009,05
  • [47] Rathgeber C;Nicault A;Guiot J. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 2000,04
  • [48] 罗天祥. 中国主要森林类型生物生产力格局及其数学模型. 北京:中国科学院地理科学与资源研究所, 1996
  • [49] Zhao X;Tan K;Zhao S. Changing climate affects vegetation growth in the arid region of the Northwestern China. Journal of Arid Environments, 2011,10
  • [50] Kaufmann R;D'Arrigo R;Paletta L. Identifying climatic controls on ring width:the timing of correlations between tree rings and NDVI. Earth Interactions, 2008,14
  • [51] Kong G Q;Luo T X;Liu X S. Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains,southeast Tibet. Plant Ecology, 2012,11
  • [52] Leavitt S W;Chase T N;Rajagopalan B. Southwestern US tree-ring carbon isotope indices as a possible proxy for reconstruction of greenness of vegetation. Geophysical Research Letter, 2008,12
  • [53] Leblanc D C. Using tree rings to study forest decline:an epidemiological approach based on estimated annual wood volume increment. Tucson,AZ:University of Arizona, 1996
  • [54] Lopatin E;Kolstrom T;Spiecker H. Determination of forest growth trends in Komi Republic (Northwestern Russia):combination of tree-ring analysis and remote sensing data. BOREAL ENVIRONMENT RESEARCH, 2006,05
  • [55] Malmstrom C M;Thompson M V;Juday G P. Interannual variation in global-scale net primary production:testing model estimates. Global Biogeochemical Cycles, 1997,03
  • [56] Maselli F;Chiesi M;Barbati A. Assessment of forest net primary production through the elaboration of multisource ground and remote sensing data. Journal of Environmental Monitoring, 2010,05
  • [57] Metsaranta J M;Kurz W A. Inter-annual variability of ecosystem production in boreal jack pine forests (1975-2004) estimated from tree-ring data using CBM-CFS3. Ecological Modelling, 2012,01
  • [58] Muukkonen P. Generalized allometric volume and biomass equations for some tree species in Europe. EUROPEAN JOURNAL OF FOREST RESEARCH, 2007,02
  • [59] Myneni R B;Keeling C;Tucker C. Increased plant growth in the northern high latitudes from 1981 to 1991. NATURE, 1997,6626
查看更多︾
相似文献 查看更多>>
54.90.204.233